高考在线
高考在线 >教案

鸡兔同笼教案(精选五篇)

2023-08-06 16:26:35 高考在线

  鸡兔同笼教案 篇1

  教学内容:

  教科书数学六年级上册P112-115。

  教学目标:

  1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

  2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

  3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

  教学重点:

  让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

  教学难点:

  理解假设法中各步的算理

  教具准备:

  多媒体课件

  教学过程:

  一、解读原题,直奔主题。

  1、谈话,激情导入

  师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。

  (1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

  (2)揭示课题

  (3)原题解读

  师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?

  课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

  [设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]

  二、合作探究,寻找策略。

  1、改变原题

  师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。

  (1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

  (2)理解题意:从题中你获得哪些信息?

  让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。

  探索策略

  2、列表尝试法

  ①猜一猜:笼子里可能有几只鸡?几只兔?

  ②说一说:他猜的对吗?要怎么知道他猜的对不对?

  ③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。

  ④展示答题卡:我试了( )次得出答案。鸡有( )只,兔有( )只。

  ⑤反馈交流

  A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?

  B、取中或跳跃尝试,数一数试了几次?有什么秘诀?

  ⑥小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。

  [设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]

  3、假设法

  ①、学生独立尝试列式解答

  ②、小组讨论,说一说用假设法解答的算理

  ③、汇报反馈

  ④、课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。

  A、假设笼子里都是鸡,一共有几只脚?

  条件告诉我们几只脚,这样就少了几只脚呢?

  为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?

  那么几只兔看成鸡一共少了10只脚呢?

  B、假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?

  为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?

  那么几只鸡看成兔一共多了6只脚呢?

  ⑤、让学生对照课件说一说算式表示的意义

  ⑥、思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?

  [设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学的难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上合作探究,学生从自主尝试到讨论汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化为数学语言,从而形成了解决问题的新策略,发展了学生的思维水平,获得了新的数学思想方法。]

  4、方程解

  解:设兔有 只,则鸡有 只。

  也可以设:鸡为 只,则兔有 只。(略)

  师:在列方程解答时碰到什么困难?该如何解决?

  [设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的.一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]

  5、梳理小结,比较优化。

  三、推广应用,建立模型。

  1、选择自己喜欢的方法解决《孙子算经》中的原题。

  2、解决生活中的“鸡兔同笼”的问题。

  (1)动物园中的问题。

  动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

  (2)游乐园中的问题。

  有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?

  3、对比联系,建立模型。

  4、小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。

  5、让学生举出生活中类似的“鸡兔同笼”问题。

  [设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]

  四、引导阅读,课外延伸。

  1、阅读并思考课本114页的“阅读材料”。

  2、完成练习二十六的1—3题。

  [设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]

  鸡兔同笼教案 篇2

  教学目标:

  1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

  2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

  3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

  教学重点:

  从不同的角度分析,掌握解题的策略与方法。

  教学流程:

  一、创设情境,明确目标

  1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。

  2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。

  二、自主探索,合作交流

  1、出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

  (1)你从中获取什么信息?……

  (2)请你们猜一猜将鸡、兔可能是几只?(……)

  (3)把你猜的过程给大家说一说

  (4)板书学生的过程

  鸡 1 2 3

  兔 4 3 2

  腿 18 16 14

  (4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)

  2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

  (1)自己先想一想如何利用列表来解决?

  (2)小组内交流一下自己的想法。

  (3)独立完成列表。

  (4)汇报想法和过程

  小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

  通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)

  小组2:跳跃式列表——假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)

  引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

  小组3:取中列表——假设鸡兔各有10只

  小组4:方程

  小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)

  三、适时反思,掌握策略(两题任选其一)

  “同学们,鸡兔同笼”

  1、观察三种列表的方法,比较异同?

  2、谈一谈;你们有什么感受?

  四、深化练习,拓展延伸

  1、课后练习1、2、3(比较不同——答案是否唯一)

  2、通过今天的学习,有什么收获?

  鸡兔同笼教案 篇3

  教学目标

  1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

  2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。

  3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。

  教学过程

  一、故事引入

  教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

  出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

  二、探究新知

  1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

  让学生以两人为一组讨论。

  汇报讨论的结果。

  (1)、列表:

  鸡876543

  兔012345

  脚161820222426

  (2)、假设法:

  假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。

  因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。

  因此,鸡就有:8-5=3(只)

  (3)、用方程解:

  解:设鸡有x只,那么兔就有(8-x)只。

  根据鸡兔共有26只脚来列方程式

  2x+(8-x)4=26

  2x+84-4x=26

  32-26=4x-2x

  2x=6

  x=3

  8-3=5(只)

  2、小结解题方法:

  教师:以上三种解法,哪一种更方便?

  小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。

  3、独立解决书中的趣题。

  (1)、方程解:

  解:设鸡有x只,那么兔就有(35-x)只。

  根据鸡兔共有94只脚来列方程式

  2x+(35-x)4=94

  2x+354-4x=94

  140-94=4x-2x

  2x=46

  x=23

  35-23=12(只)

  答:鸡有23只,兔有12只。

  (2)、算术解:

  假设都是鸡。

  235=70(只)

  94-70=24(只)

  24(4-2)=12(只)

  35-12=23(只)

  答:鸡有23只,兔有12只。

  三、巩固与运用

  1、完成教科书第115页做一做的第1题。

  学生独立读题分析后,列式解答。鼓励用方程解。

  2、完成教科书第115页做一做的第2题。

  提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

  请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

  68=48(人)

  假设8条都是大船可坐48人。

  48-38=10(人)

  假设人数比实际的人数多10人。

  多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

  10(6-4)=5(条)

  8-5=3(条)

  这是表示有3条大船。

  四、作业

  练习二十六第一、二题。

  鸡兔同笼教案 篇4

  教学目标:

  1、在解决鸡兔同笼的活动中,通过列表枚举解决鸡兔的数量问题。

  2、在解决鸡兔同笼的活动中,通过列表尝试和不断调整的过程从中体会解决问题的一般策略——列表,让学生学会从不同角度分析,掌握解题的策略与方法。

  3、运用学到的解题策略——列表解决生活中的实际问题。

  4、培养学生分析问题的能力,渗透假设的数学思想。

  教学重点

  让学生经历列表、尝试和不断调整的过程,体会解决问题的一般策略—列表。

  教学难点

  运用学到的解题策略解决生活中的实际问题。

  教学过程:

  一、情境引入,激发兴趣

  今天老师给同学们带来一本书《孙子算经》,其中有这样一道题目:

  今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

  谁来读一读,你见过这类题吗?

  今天我们就来研究这类问题(板书鸡兔同笼)

  二、探索问题

  1、课件出示:(教材中的情景图)鸡兔同笼,有20个头,54条腿,鸡、兔各有多少只?

  从图中你能知道哪些数学信息:(有鸡、有兔、20个头、54只腿,鸡有2条腿、兔有4条腿)

  现在同学们就来猜一猜鸡、兔各有多少只?

  把你猜想的结果跟你的同桌同学交流交流。

  学生交流后:请学生汇报猜想的情况

  教师随机板书

  看到这么多种猜测,你知道哪种答案是正确的吗?你又想说什么?

  生:可以按照一定的顺序把他们排列起来看就很清楚。

  师:对,按照一定的顺序把他们排列在表格里那会看得更清楚。

  那么列表先做什么。

  生:(1)画表

  (2)填写第一行

  师:请你们把猜测的结果按一定的顺序填在表格中,并验证,哪种猜测正确。

  出示学习要求:

  1、先独立尝试猜测。

  2、把尝试的数据在表格中表达出来。

  3、在小组内交流自己的想法。

  生:尝试列表

  展示学生的表格请学生说一说是怎样做的。

  师:一共尝试了几次。

  生:13次,尝试出了这道题的答案。

  师:我发现刚才同学们在写腿的只数时特别快,观察这张表格,你发现了什么?

  生:在头数相同的情况下,增加一只鸡,减少一只兔,腿就少2只。

  师:给这种列表法起个名字。

  生:起名字。

  师:在数学上也有一个名字逐一列表。

  师:观察这张表格,你有什么发现。

  生:一一列出,肯定能找出答案,但有些麻烦。

  师:那还有什么列表方法。

  展示学生第二种列表方法出示表格。

  生:说这种列表的方法。

  师:观察这个表格,你又发现了什么。

  生:这种列表,先几个几个的数,再逐渐调整。

  师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表。

  展示学生第三种列表方法出示表格。

  生:说这种列表的方法。

  师:观察这个表格,你又发现了什么。

  生:这种列表,先假设鸡兔各占一半,再调整。

  师:这种列表有直接特点,我们称这种列表方法为取中列表。

  想一想,为什么用列表法解决这个问题。

  生:简单,能准确计算结果。

  师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么?

  生:列表。

  师:首先根据信息尝试猜测,再计算验证,最后合理调整。

  师:还可以用什么方法计算。

  生:计算。

  师:想知道古人是怎样解决这道题吗?

  课件出示资料

  师:看了这个资料你想说什么?

  三、实践运用,巩固深化

  1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5。1元,1角和5角的硬币各有多少枚?

  2、赛场上12张乒乓球台上同时有34人进行比赛,正在进行单打、双打比赛的球台各有几张?

  3、小红参加数学知识竞赛,共10道题,每做对一道题得10分,做错一道题扣2分。小红每道题都做了,共得64分。她做对了几道题?

  四、总结

  通过这堂课的学习你学会了什么?

  鸡兔同笼教案 篇5

  复习目标:

  通过复习进一步用假设法或列表法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

  复习重点:

  尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。

  复习难点:

  在解决问题的过程中,培养学生的逻辑思维能力。

  教法:分析、引导

  学法:自主探究

  课前准备:多媒体。

  教学过程:

  一、定向导学:2分钟

  1、板书课题

  2、复习目标:

  掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。

  二、方法归类:8分

  1、填空:

  一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。

  一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。

  鸡兔共五只,腿有( )条。

  2、谁记得解决这类问题的方法呢?

  学生回答

  3、了解抬脚法

  笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,

  有94只脚。鸡和兔各有几只?

  古人的算法可以用下图表示:

  头… 35 脚减半 35 下减上 35 上减下 23 …鸡

  脚… 94 47 12 12 …兔

  三、解决问题:10分

  (1)、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?

  (2)、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?

  (3)比赛答题,对一题加10分,错一题扣6分,一道对题比一道错题多( )

  分。

  (4)数学竞赛,答对一题得10分,答错一题扣6分。小明抢答了16道题,最后得分16分,他答对了几道题?

  四、小结检测:20分钟

  1、小结:通过今天的复习,你有什么收获?还有什么疑问吗?

  2、检测:

  a、问答:

  (1)解答鸡兔同笼问题要弄清( )多少只,还要弄清( )多少只。

  b、解决问题

  (1)、全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?

  (2)大和尚一人吃3个馒头,小和尚3人吃一个馒头,100个和尚吃100个馒头。求大、小和尚各有多少个人?

  (3)篮球比赛,张鹏共得21分,张鹏在这场比赛中投进了几个3分球?几个2分球?(张鹏没有罚球)

  (4)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?