高考在线
高考在线 >教学反思

解决问题策略的教学片断与反思

2023-08-16 08:56:43 高考在线

解决问题策略的教学片断与反思

  “解决问题的策略”教学片断与反思

  新课标提出要重视培养学生“形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。”如何践行这一理念呢?下面结合苏教版国标本五年级上册P63“解决问题的策略”例1的教学实践谈点粗浅的认识:

  教学片断

  师:王大叔想用18根1米长的栅栏围成一个长方形羊圈,他会怎么围呢?

  (出示例1)

  师:这句话中告诉我们什么信息?

  生:这个长方形羊圈的周长是18米。

  师:猜想一下,他会怎么围呢?

  生1:用6根栅栏做长,3根栅栏作宽。

  生2:还可以用8根栅栏做长,1根作宽。

  师:你们是怎么想的?

  生:要围成一个长方形,就要知道这个长方形的长与宽,根据条件知道长方形的周长是18米,可以知道长与宽的和是9米。

  师:有没有不同的想法?

  生:我是摆出来的,用8根栅栏做长,1根栅栏作宽。

  师:同学们的想法都有道理,但现在王大叔思考的问题却是怎样围面积最大?你们能帮他解决这个问题吗?

  生3:应该选长为8米,宽为1米的长方形。

  师:为什么呢?

  生:我觉得面积最大,它的长和宽就应该最大。

  生4:不对,我觉得应该选长是5米,宽为4米的长方形。5×4=20,8×1=8,20比8大。

  ……

  师:到底怎样围面积最大?光靠这样简单的猜想和无谓的争议是不够的,你们有没有更好的解决办法吗?

  生:我觉得应该把各种情况的长方形都算一算,就知道哪种面积最大了。

  师:前面我们学过列表的方法整理数据,现在就请大家用列表的方法把各种情况都整理一下,再算一算。出示下表:

  长(米)

  宽(米)

  面积(平方米)

  (学生列表整理,计算汇报,教师把相应数据填入表中)

  生:我们发现长5米、宽4米的长方形面积最大。

  师:刚才大家用列表整理数据的办法验证了大家的猜想,可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的探究给我们一些启发。现在大家再次观察一下上面的表格,你有什么新的发现?然后在小组内相互交流交流。

  生:我知道了周长相等的长方形,面积不一定相同。

  生:我觉得长方形的长和宽越接近时面积越大。

  生:我发现长方形的长越大,宽越小,面积就越小。

  师:这是为什么呢?同学们能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?

  生:老师,我明白了当长方形的长越大,宽越小,围成的长方形就越扁,它的面积就越小,如果长为9米,宽为0米,这个长方形的面积就为零了。

  生:老师,还可以围成更大的面积,只要把两根栅栏都平均剪开,这样就可以围成一个正方形了,它的边长都是45分米。

  师:这是一个新的发现,这个发现有没有道理呢?相信大家能得出正确的回答……

  教学反思

  “策略”的习得不同于知识与技能的掌握,它对学生的数学学习提出了更高的`要求,也成为我们开展新课改实践的新课题。纵观本课例的教学过程,有下列启示:

  1、凸现问题的探究价值与开放性——形成策略

  策略的形成首先源于什么样的数学问题,而什么样的数学问题又影响着什么样的解决策略。教材上原本的设计是“围成的羊圈长8米,面积是多大呢?”教者在执教时将之巧妙地改为“王大叔会怎么围呢,怎样围面积最大?”比较两者的提法,显然后者的提法更富有探究价值,更具有开放性。正是源于问题的挑

  战性,学生的学习兴趣盎然,思路放得开,能积极地尝试各种不同的策略进行探究,猜想验证、画图、列表等不同的问题解决策略自然而然生成。

  2、紧扣“数学思维发展过程”这个学习活动核心——优化策略

  标准提出,无论是什么样的问题解决策略的产生,都必须以“观察、思考、猜测、交流、推理”等富有思维成分的活动过程为其载体。本课例中教者紧紧扣住“数学思维发展过程”这一核心,适时地引领着学生的思维不断攀爬提升,不断提升策略选择的思维品质。如出示问题后,教者提出“猜想一下,他会怎么围呢?”引导学生从数学的角度分析问题、形成策略;当学生对各种围法进行争议时,教师提出“光靠这样猜想、争议还不够,你们有没有更好的解决办法吗?”逼着学生另辟蹊径,进行策略改向;在学生以为顺利解决问题后,教师又提出“可能有的同学猜想正确,也可能错误了,但都不要紧,关键的是我们通过这个问题的探究给我们一些启发”,引导学生开展交流与评价,进行策略反思。这样,一步步地引导学生用数学的眼光提出问题、理解问题、解决问题,发展思维,优化策略。

  3、尊重学习个性,彰显创新精神——发展策略

  列表收集整理信息,是本课例要求学生掌握的一个基本策略,也是一本课的重点,但教者在教学活动中充分尊重学生的个性特点,基于此又不局限于此,让学生在体验不同的策略过程中个性得到张扬,从而激起创新的火化。比如,教者在学生提出不同的围法后,让学生大胆地直觉“猜测一下,哪一种围法面积最大?”再如,学生通过列表验证了猜测解决了问题,教者却未停留在问题解决的结果上,而是进一步引导学生“能不能闭上眼睛在头脑里想一想围成的长方形分别是什么样的?有什么感悟?”这样数形结合,进一步挑起究其竟的心理冲突、不满足的欲望,为形成富有理性的数学思考积累经验与感悟。