-
相关文章
路旁的橡树译文教学反思
2023-08-08 15:47:01立定跳远的教学反思怎么写
2023-08-18 18:44:12树之歌教学反思(精选六篇)
2023-08-10 04:11:30生活中的冷色教学反思范文
2023-08-16 08:57:46云雀的心愿教学反思(十五篇)
2023-08-14 13:03:41四年级数学小数的读法和写法教学反思范文
2023-08-09 21:40:37部编版五年级语文教学反思(精选六篇)
2023-08-11 07:59:48路旁的橡树译文教学反思
2023-08-08 15:47:01双方调解协议书模板汇编六篇
2023-08-08 19:46:41合伙办厂协议书范本(通用五篇)
2023-08-05 11:55:27交通事故协议书范本(精选五篇)
2023-08-05 21:30:11
正弦定理的教学反思
正弦定理的教学反思1
本节课是“正弦定理”教学的第二节课,其主要任务是通过对正弦定理的进一步理解,明确它在“已知三角形的两边及一边所对的角解三角形”方面的应用和运用正弦定理的变式来求三角形中的角和判断三角形的形状。
在知识目标方面:通过创设适宜的数学情境,引导鼓励学生大胆地提出问题、引导学生对所提的问题进行分析、整理,筛选出有价值的问题,注意启发学生揭示问题的数学实质,将提问推向深入。通过问题的提出、解题方法的探索、到问题的解决、方法的总结、及练习题中方法的应用,都能紧抓公式及公式的变式,运用从特殊到一般、再从一般到特殊的思想方法达成知识目标。通过练习及六个变式问题调动学生的学习热情,进而采用“正弦定理”、“大边对大角”、“三角形内角和定理”、“数形结合”等知识与方法有效突破本节课的教学难点。使学生明白这一类数学问题该怎样解,让学生做到“学会数学,会学数学”。
在能力目标方面:通过例题、练习及六个变式问题,培养学生观察、归纳、概括新知识的能力;通过“故意出错”,让学生“质疑”、“找错”、“改错”,从而使学生的思维具有批判性,优化他们的思维品质;通过课后练习及课后思考,进一步培养学生的数学意识,解决数学问题的能力。
在情感态度与价值观方面:本节课也很注重对学生非智力因素的培养,注重情感交流与情感的建立与培养。并在教学过程中做到:与学生真诚相处、平等交流;依据自己的个人特点采取适当的方法与技巧,注重充分发挥教师的个人人格魅力,而非千篇一律的“柔声细语”;能借助信息技术及其它手段,营造一种氛围,一种情境,通过“课前音乐背景”的设置,“课堂上的掌声鼓励”“形体语言与语言艺术”的运用等,力争营造一种愉快、轻松的氛围,创建一个有助于师生,生生思维交流的“情感场”,使数学教学更具有生命力,感染力。使学生在感悟数学的过程中感受数学的魅力,体验数学产生的`美感与幸福感。
通过这节课的学习,不仅复习巩固了旧知识,使学生掌握了新的有用的知识,体会联系、发展等辩证观点,而且培养了学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。
正弦定理的教学反思2
在备这节课时,我有两个问题需要精心设计。一个是问题的引入,一个是定理的证明。本节课以学生为主体,“问题提出问题解决为主线”,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
上完这节课,让我有这样一些体会:
1、问题是思维的起点,是学生主动探索的动力。本节课在教学过程中充分发挥学生主体作用,始终以问题的形式引导学生主动参与,在师生互动、生生互动中让学习过程成为学生心灵愉悦的主动认知过程,做到了把握重点、突破难点。
2、在教学中恰当地利用多媒体技术,是突破教学难点的一个重要手段。本节课利用《几何画板》探究比值,的值,由动到静,取得了很好的效果。”
3、做练习时,有学生提出解三角形时,正弦定理可以解决哪些问题?学生有这样归纳的意识,在课堂及时肯定,表扬,并在课后刻意留一道思考题,任务后延,自主探究,使学生发现用正弦定理解决两边一对角问题时可能会出现两解,一解或无解的情况,那么自然过渡到下一节内容,已知两边和其中一边的对角解三角形时判断解的个数问题。
4、正弦定理的证明方法很多,如利用三角形的面积公式、利用三角形的外接圆、利用向量证明等,本节课将斜三角形的边角关系转化为直角三角形的边角关系导出正弦定理,采用转化,分类讨论的的数学思想,是学生们易于接受的一种证明方法。但在具体的推导时,发现学生可以想到对三角形进行分类讨论,并将斜三角形转化成直角三角形证明,但在转化时,不仅可以通过作高,还可以有别的方法,比如外接圆法。但在证明时只用了作高这种方法,这种思路虽然简单,但不是从学生的头脑中产生的,而是教师强加给学生的,只注意教学的结果而没有注意学生思维过程的发展,思路再好对学生的也没有指导意义。所以今后要注意尊重学生思维的发展的过程,这是一种理念,也是一种能力。上好一堂课不仅有好的教学设计,还应有灵活应变的能力,要尊重学生的思路,善于发现学生的闪光点,并及时引导,才不会为了进度而导下,将学生强拉进自己事先设计好的轨道。
5、在教学设计和课堂教学中应充分了解学生、研究学生,备课不仅是备知识,更重要的是备学生。作为教师只有真正树立以学生的发展为本的教学理念,才能尊重学生思维过程的发生、发展,才能从学生的知识水平和理解能力出发,创设合理的教学情境,才能为学生提供充分的数学活动和交流的机会,使学生从单纯的知识接受者转变为数学学习的主人。
正弦定理的教学反思3
我对教学所持的观念是:数学学习的主要目的是:“在掌握知识的同时,领悟由其内容反映出来的数学思想方法,要在思维能力、情感态度与价值观等多方面得到进步和发展。”数学学习的有效方式是“主动、探究、合作。”现代教育应是开放性教育,师生互动的教育,探索发现的教育,充满活力的教育。可是这些说起来容易,做起来却困难重重,平时我在教学过程中迫于升学的压力,课堂任务完不成的担心,总是顾虑重重,不敢大胆尝试,畏首畏尾,放不开,走不出以知识传授为主的课堂教学形式,教师讲的多,学生被动的听、记、练,教师唱独角戏,师生互动少,这种形式单一的教法大大削弱了学生主动学习的兴趣,压抑了学生的思维发展,从而成绩无法大幅提高。今后要改变这种状况,我想在课堂上多给学生发言机会、板演机会,创造条件,使得学生总想在老师面前同学面前表现自我,让学生在思维运动中训练思维,让学生到前面来讲,促进学生之间聪明才智的相互交流。
三角形中的几何计算的主要内容是利用正弦定理和余弦定理解斜三角形,是对正、余弦定理的拓展和强化,可看作前两节课的习题课。本节课的重点是运用正弦定理和余弦定理处理三角形中的计算问题,难点是如何在理解题意的基础上将实际问题数学化。在求解问题时,首先要确定与未知量之间相关联的量,把所求的问题转化为由已知条件可直接求解的量上来。为了突出重点,突破难点,结合学生的学习情况,我是从这几方面体现的:我在这节课里所选择的例题就考常出现的三种题型:解三形、判断三角形形状及三角形面积,题目都是很有代表性的,并在学生练习过程中将例题变形让学生能观察到此类题的考点及易错点。这节课我试图根据新课标的精神去设计,去进行教学,试图以“问题”贯穿我的整个教学过程,努力改进自己的教学方法,让学生的接受式学习中融入问题解决的成份,企图把讲授式与活动式教学有机整合,希望在学生巩固基础知识的同时,能够发展学生的创新精神和实践能力,但我觉得自己还有如下几点做得还不够:
①课堂容量中体来说比较适中,但由于学生的整体能力比较差,没有给出一定的时间让同学们进行讨论,把老师自己认为难的,学生不易懂得直接让优等生进行展示,学生缺乏对这几个题目事先认识,没有引起学生的共同参与,效果上有一定的折扣;
②没有充分挖掘学生探索解题思路,对学生的解题思维只给出了点评,而没有引起学生对这一问题的深入研究,例如对于运用正弦定理求三角形的角的时候,出了给学生们常规方法外,还应给出老教材中关于三角形个数的方法,致少应介绍一下;
③没有很好对学生的解题过程和方法进行点评,没起到“画龙点睛”的作用。
④第五个学生的展示的结论有一个角应是105,他给出的是75,而我没有发现,这是我在教学过程中的一个很大失误。
⑤本来准备了一道练习题,但没能很好把握时间,而放弃了,说明了对这堂课准备不足,缺乏对学生很好的了解。