高考在线
高考在线 >教学反思

二次函数的教学反思(精选五篇)

2023-08-13 12:46:02 高考在线

  二次函数的教学反思1

  二次函数是学生学习了正比例函数,一次函数和反比例函数以后进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些简单变量最优化问题的数学模型。和一次函数,反比例函数一样,它也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数,体会函数的思想奠定基础和积累经验。

  本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导”出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax+bx+c(a,b,c是常数,a≠0)。最后,通过随堂练习巩固二次函数的概念并解决一些简单的数学问题。

  我个人以为,本节课的成功之处是:

  教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型,通过学习求一些简单的实际问题中二次函数的解析式,大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述,研究变量之间变化规律的意义。让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。

  二次函数的教学反思2

  二次函数是初中阶段研究的一个具体、重要的函数,在历年来中考题中都占有较大的分值。二次函数不仅和学生前面学习的一元二次方程有着密切的联系,而且对培养学生“数形结合”的数学思想有着重要的作用。而二次函数的概念是后面学习二次函数的基础,在整个教材体系中起着承上启下的作用。

  本节课的内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决实际问题。为此,先让学生复习了函数及一次函数的相关内容,然后设计具体的问题情境让学生自己推导出一个二次函数,并观察、总结它与一次函数的不同,在此基础上逐步归纳出二次函数的一般表达式,最后通过习题巩固二次函数的概念并解决一些简单的数学问题。

  我个人认为,本节课的成功之处是:一是在教学设计上“步步为营”,学生的思维能力“层层提高”。在教学设计上,根据内容的需要,我合理设计具有针对性的问题,借助学生已有的知识展开教学,通过解决问题,充分激发学生的求知欲,调动学生学习的积极性和主动性。

  二是在学习的过程中,不仅注重对学生知识的教授,更注重教给学生学习和思考的方法,提高学生独立发现问题、解决问题的能力,让学生时时体验到成功的快乐。

  三是在整个教学过程中,注重不同层次学生的发展,不同的学生的个体差异,再加上受教学目的等因素的限制,导致一些学有余力的学生会感到吃不饱现象,因此在后面的练习设计中,也有针对性的习题,对这部分学生提高也是很有帮助的。

  不足之处表现在:

  1、由于学生对一次函数的遗忘,因此复习占用的太多的时间,导致课后练习没完成。

  2、学生自学环节,要求不够细致,学生学的不够深入只是看了教材,而未挖掘出教材以外的东西。

  3、由于时间紧张小结的不够完整。

  总之,本节课的教学,虽取得了一些成绩。但也暴露出了许多问题。今后在教学中我一定吸取教训,努力改正自己的不足,提高自己的教学上水平。

  二次函数的教学反思3

  这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的限制。依我看,这节课的重点该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上。一上完这节课后就有所感触:

  1、二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。许多实际问题往往可以归结为二次函数加以研究。

  2、教学要重视概念的形成和建构,在概念的学习过程中,从丰富的现实背景和学生感兴趣的问题出发,通过学生之间的合作与交流的探究性活动,引导分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。

  3、课堂教学要求老师除了深入备好课外,还要懂得根据学生反馈来适时变通,组织学生讨论时该放则放,该收则收,合理使用好课堂45分钟,尽可能把课堂还给学生。

  我觉得在教学中,只光热情还不够,没有积极调动学生的学习热情,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。总之,在数学教学中不但要善于设疑置难,激发学生的学习热情,同时要加强学生自学能力的培养,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

  二次函数的教学反思4

  二次函数是中学数学的重要内容,也是中考的热点。其中考试涉及的主要有考查二次函数的定义、图象与性质及应用等。在九年级的教学中,教师就要立足课堂,瞄准中考,研究中考试题。近年来,二次函数的应用题目不断出现在各地中考题中,特别值得一提的是,有些源自课本中的例题或习题原型和变式。在日常教学时,注重对接,为中考做好铺垫,是我对这节二次函数解决实际问题实

  1、践探索课的期待

  二次函数应用题型一般情况下,解题思路不外乎建立平面直角坐标系,标出图象上的点的坐标,求图象解析式,利用图象解析式及性质,来解决最优化等实际问题。一开始我引导学生回忆二次函数的三种不同形式的解析式,即一般式、顶点式、交点式,并说出它们各自的性质如抛物线的开口方向,对称轴,顶点坐标,最大最小值,函数在对称轴两侧的增减性。结合北师大版教材教学内容,呈现习题,让学生分小组去试验探索解决问题。各小组很快就求出了抛物线的解析式,当然速度有快有慢,第二问,及少学生举手示意完成,我很高兴,也没细究他们的情况。继续按照预定方案,组织学生活动,开始对第二问进行探究。对于这个问题,不少学生表情凝重,目光迷惘,思路不畅,不知从何处下手。我反复引导,几次提醒按例题的方法,从函数的图象上进行考虑,但就是没有人响应,探究几乎陷于停顿,让我大感意外,超乎我的想象。好在我尚能应付,便提问素有“学霸”之称的小熊,你是怎样思考的?小熊说,他也知道首先建立平面直角坐标系,画出草图,但是不知道卡车是如何穿过桥洞,是靠中间走,还是靠边通过?我一听,才恍然大悟。原来学生的认知和老师想象的不一样,加上生活经验较少,难怪学生会沉默不语。对于坐标系的建立方法,学生面对多种可能的选择,往往束手无策,根本原因就是老师不重视对学生思考水平的研究,导致以老师思维代替学生思维,造成学生思考与实践脱节。这就要求老师要从学生的实际出发,了解学生的学习状况,善于启发和引导,才能较好的达到教学目标。

  本节课的设计初衷,原是让学生从具体的生活实践中,感知数学模型,达到从实际问题中抽象出数学模型,并用数学知识解决问题,同时让学生感知和体会一题多变的变式训练,增加对数学解题思想的认识。但在教学时,学生对一些常规知识的缺失突出的暴露出来。如利用三点坐标求二次函数解析式,学生解三元一次方程组感到困难等。

  当我充满自信准备进行下一问时,有学生说,我还没得出答案呢?我说,你们小组不是展示过了,怎么你还不会呢?他说,我的解析式设y=ax2+bx+c,我代入得不出来,组长设的和我不一样。我告诉他,其实你用一般式同样可以做的很准,只不过速度稍慢一些,这就需要加强运算练习。下课后我一直在思考,学生越是基础差,那些好的方法他们就越难掌握。学起来既吃力有费气,这就需要在平常加强双基训练,每个学生都必须掌握好基本概念和基本技能。

  教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。

  由于本节课是二次函数的应用问题,重在通过学习总结解决问题的方法和数学思想的应用,故而本节课以“启发探究式”为主线开展教学活动,以学生的合作交流为主,必要时加以引导,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。二次函数应用的教学后,比我预想的效果要好一些,出现了几个点引人深思:

  2、精心设计问题,引发学生思考建立数模

  本节以《二次函数的综合应用》为契机,培养学生的分析问题、解决问题的能力。本节课重点放在分析问题,将实际问题转化为数学问题,建立数学模型解决问题。所以在教学时,教师应有意锻炼学生从读题开始,分析题意,搜索与问题有联系的数学知识,运用知识和技能使问题获得解决。在备课中,我发现学生对例题的理解存在困难,采用设计小问题,设小台阶,引导学生探究,突破教学难点,带领学生寻找解决的方法。我设铺计的问题如下:

  (1)读题,检索有用信息;

  (2)分析已知,他们讲的是什么含义?根据题意画出图形;

  (3)分析所求,是让我们求什么?将实际问题可转化为什么知识来解决?

  (4)如何求二次函数的最大值?

  学生根据老师提出的问题,小组讨论,同学间互相交流与补充,在教师的引领下,发现本题就是转化为求二次函数的`最大值问题,逐步将难点突破,帮助学生建立数模解决问题。学生在动手画图、讨论的基础上找到解决的方法与步骤,先求二次函数的解析式,再求二次函数的最大值。学生在理解题意后画图形,又加深了对题目的理解,为解决问题奠定了基础,进一步体会运用数形结合的思想方法求解二次函数的问题,将数学思想与方法渗透到整个教学过程中。

  3、为学生提供思考的空间,注重一题多解

  学生在建立平面直角坐标系后,根据题意知道,对称轴是x=1,A点坐标(0,2),B点坐标(0,0),C点坐标(0,2),确定二次函数解析式时,出现了一个小插曲。学生用一般式确定二次函数解式后,有同学想用其他的方法求解想法,我马上鼓励学生去寻找新的方法。个别学生思维活跃,有个学生想用两根式求解析式,让这个学生说出自己的思路,其他学生帮助他进行分析与补充。该同学将A、B、C三点坐标带入两根式求解,发现求得解析式与用一般式求得解析式不同,很疑惑,不知道问题出在哪里?我并没有否定该同学的方法,而是让其他学生帮助纠正,在大家的分析图形中发现,B点坐标不在抛物线上,不能将其带入。

  在教学中出现分歧时,要给学生空间去思考,发现问题的原因,从而确定解决得方法,避免今后出现类似错误。而学生善于思考,在用两根式求解析式时,我设计一个小陷阱,故意引导学生选用A、B、C三点求解析式,学生通过计算与观察,同样发现了这个问题:B点坐标不在抛物线上,不能将其带入求解。在这种情景下,追问:如何利用两根式确定解析式呢?学生积极性很高,小组讨论,学生根据抛物线的对称性找到它与x轴另一个交点D(—0.5,0),将A、D、C三点带入可求出二次函数的解析式。在教学中,要注重解题方法的灵活性,一题多解,开阔学生的思维,提高学生的发现问题,解决问题的能力。在教学过程中,层层设疑,激发学生求知欲,积极主动参与教学活动,大大提高了课堂效率。

  4、数学来源于生活并运用于生活

  例题有较强的现实感,例题的选择增加数学教学的现实性,使学生体验数学知识与日常生活的密切联系,从而培养学生喜爱数学,学好数学的情感。课堂中,学生在解决数学情境问题的过程中,感悟数学来源于生活并运用于生活,激发学生学习数学的兴趣。在课上,学生因问题来自于身边而思维活跃,有强烈的探索欲望,这样才能充分发挥学生学习的积极性,进而提高课堂教学质量。

  5、不足之处:

  《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习探讨。在本节课的教学中,教师引导学生较多,没有完全放开让学生自主探究学习,获得新知;学生在数学学习中还是有较强的依赖性,教师要有意培养学生自主学习的能力。

  教师要想在开放的课堂上具有灵活驾驭的能力,就需要在备课时尽量考虑周到,既要备教材,又要备学生,更需要教师具有丰富的科学文化知识,这样才能使我们的学生在轻松活跃的课堂上找到学习的乐趣与兴趣。

  二次函数的教学反思5

  从课本的体系来看,这节课明显是要让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。

  完成这节课后,静下心来准备写个教学反思。重新思索教材的编写意图,发现课本这部分内容大部分篇幅是在讲三个实际问题,由此引出了二次函数,我才意识其实这节课的重点实际上应该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上,有了这个认识,一切变得简单了!

  对于实际问题的选择,我将4个问题整和于同一个实际背景下,这样设计既能引起学生兴趣,也尽量减少学生审题的时间,显得非常有层次性,这些实际问题贯穿整个课堂的始终,使整个课堂有浑然天成的感觉。

  对于练习的设计,仍然采取了不重复的原则性,尽量做到每题针对一个问题,并进行及时的小结,也遵循了从开放到封闭的原则,达到了良好的效果。

  对于最后讨论题的设计和提出,是我在进行了整个一章的单元备课后发现,我们其实对二次函数的最值问题是不讲的,但是不讲并不代表一点都不会涉及到,其中用到的思想方法还是相当重要的,在图象的观察中也具有了重要的地位,再加上这个问题在进行了前面的实际问题的解答之后是呼之欲出的:多种树——想提高产量——多种几棵好呢?,所以我设计了这个探索性的问题:假如你是果园的主人,你准备多种几棵?注意这里我并没有提出最大最小值的问题,但是所有的学生都能理解到,这是数学的魅力。这个问题的提出是整节课的一个高潮和精华,是学生学完二次函数定义之后,综合利用函数的基本知识,代数式的知识和一元二次方程的知识进行的思考,因而他们的想法和说法,不论对错,不论全面还是有所偏颇,其中都涉及到了重要的数学思想方法,而这些恰恰是非常重要的。事实证明学生的思维真的是非常活跃的,你要你给了足够的空间,他们总能从各方各面进行思考和解释,我也从中看到了他们智慧的火花,这是很令人欣慰的。