高考在线
高考在线 >教学设计

《探索多边形的内角和与外角和》的课程教学设计

2023-08-02 09:22:19 高考在线

《探索多边形的内角和与外角和》的课程教学设计

  [教学目标]

  知识与技能:

  1会用多边形公式进行计算。

  2理解多边形外角和公式。

  过程与方法:

  经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。

  情感态度与价值观:

  让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。

  [教学重点、难点与关键]

  教学重点:多边形的内角和。的应用。

  教学难点:探索多边形的内角和与外角和公式过程。

  教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。

  [教学方法]

  本节课采用“探究与互动”的教学方式,并配以真的情境来引题。

  [教学过程:]

  (一)探索多边形的内角和

  活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。

  边形边形边形

  活动2:

  ①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?

  ②总结多边形内角和,你会得到什么样的结论?

  多边形边数分成三角形的个数图形内角和计算规律

  三角形31

  180°(3—2)·180°

  四边形4

  五边形5

  六边形6

  七边形7

  n边形n

  活动3:把一个五边形分成几个三角形,还有其他的分法吗?

  总结多边形的内角和公式

  一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。

  巩固练习:看谁求得又快又准!(抢答)

  (二)探索多边形的外角和

  活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和。五边形的外角和等于多少?

  分析:(1)任何一个外角同于他相邻的内角有什系?

  (2)五边形的五个外角加上与他们相邻的内角所得总和是多少?

  (3)上述总和与五边形的内角和、外角和有什么关系?

  解:五边形的外角和=______________—五边形的内角和

  活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?

  也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A。最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的'外角和等于_________。

  结论:多边形的外角和=___________。

  练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。

  练习2:正五边形的每一个外角等于________,每一个内角等于_______。

  练习3。已知一个多边形,它的内角和等于外角和,它是几边形?

  (三)小结:本节课你有哪些收获?

  (四)作业:

  课本P84:习题7。3的2、6题

  附知识拓展—平面镶嵌

  (五)随堂练习(练一练)

  1、n边形的内角和等于__________,九边形的内角和等于___________。

  2、一个多边形当边数增加1时,它的内角和增加()。

  3、已知多边形的每个内角都等于150°,求这个多边形的边数?

  4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()

  A:360°B:540°C:720°D:900°