高考在线
高考在线 >数学

高中数学解题套路技巧归纳

2023-08-04 16:33:25 高考在线

数学证明题解题的方法

第一步:结合几何意义记住零点存在定理、中值定理、泰勒公式、极限存在的两个准则等基本原理,包括条件及结论。知道基本原理是证明的基础,知道的程度(即就是对定理理解的深入程度)不同会导致不同的推理能力。如20_年数学一真题第16题(1)是证明极限的存在性并求极限。只要证明了极限存在,求值是很容易的,但是如果没有证明第一步,即使求出了极限值也是不能得分的。因为数学推理是环环相扣的,如果第一步未得到结论,那么第二步就是空中楼阁。这个题目非常简单,只用了极限存在的两个准则之一:单调有界数列必有极限。只要知道这个准则,该问题就能轻松解决,因为对于该题中的数列来说,“单调性”与“有界性”都是很好验证的。像这样直接可以利用基本原理的证明题并不是很多,更多的是要用到第二步。

第二步:借助几何意义寻求证明思路。一个证明题,大多时候是能用其几何意义来正确解释的,当然最为基础的是要正确理解题目文字的含义。如20_年数学一第19题是一个关于中值定理的证明题,可以在直角坐标系中画出满足题设条件的函数草图,再联系结论能够发现:两个函数除两个端点外还有一个函数值相等的点,那就是两个函数分别取最大值的点(正确审题:两个函数取得最大值的点不一定是同一个点)之间的一个点。这样很容易想到辅助函数F(x)=f(x)-g(x)有三个零点,两次应用罗尔中值定理就能得到所证结论。再如20_年数学一第18题(1)是关于零点存在定理的证明题,只要在直角坐标系中结合所给条件作出函数y=f(x)及y=1-x在[0,1]上的图形就立刻能看到两个函数图形有交点,这就是所证结论,重要的是写出推理过程。从图形也应该看到两函数在两个端点处大小关系恰好相反,也就是差函数在两个端点的值是异号的,零点存在定理保证了区间内有零点,这就证得所需结果。如果第二步实在无法完满解决问题的话,转第三步。

第三步:逆推。从结论出发寻求证明方法。如20_年第15题是不等式证明题,该题只要应用不等式证明的一般步骤就能解决问题:即从结论出发构造函数,利用函数的单调性推出结论。在判定函数的单调性时需借助导数符号与单调性之间的关系,正常情况只需一阶导的符号就可判断函数的单调性,非正常情况却出现的更多(这里所举出的例子就属非正常情况),这时需先用二阶导数的符号判定一阶导数的单调性,再用一阶导的符号判定原来函数的单调性,从而得所要证的结果。该题中可设F(x)=ln_x-ln_a-4(x-a)/e_,其中eF(a)就是所要证的不等式。

高中数学万能解题套路

1.函数与导数

你首先要掌握函数的基础知识和导数的求导公式,这是做题的第一步,你的基础可能不能把所有的作对,所以你要首先把所有的第一到第二步做对,做题套路是:定义域+求导+分类讨论,按照这个去思考每个题目的套路和不同点,做一个会一个,刷题的策略对你来说目前不适用的,你需要做基础+提高一些的题目,你去找带答案解析的书,这样配合起来效果会好一些。

2.三角函数和解三角形

相对来说送分题,要想拿分要理清楚公式之间的`关系,并且将公式熟练应用,看题目要看角、名和指数,一般都是往统一的方向化简的。一般化简的题目最后一步都是使用辅助角公式,题目里边出现二倍角或者平方的时候,一般都是要利用二倍角公式去转化的,所以不妨自己多试试。

3.立体几何

理科的孩子只要学会了空间向量就不用害怕了,完全是计算题,但是文科孩子就痛苦了,不学习空间向量,所以还是帮大家从基础知识着手分析,你要学会线面+线线+面面的平行(垂直)的铁三角转化关系,并且要熟悉如何转化,各种定理就需要你掌握并记住,证明一个问题一定要用其他的知识解决,这是高中数学的最显着特点,从来没有直达的车,都是拐弯的。比如题目中出现中点的时候,你去证明的时候可以去找另一个中点,然后去找线线平行或者中位线。

4.概率统计

概率统计的题目分数必须拿到全部,因为这个是最简单的,所以你要掌握排列组合的公式,要掌握一般的计算思路,这是最简单的部分,所以就不展开了呢。

5.平面解析几何

这个的计算量非常的大,就算做不全对,第一步求解作对,第二步不管什么题目一般套路是:联立圆锥曲线方程+直线方程消元然后韦达定理,不会做先写到这你也可以得到一半的分数的,对于一些常考的类型,垂直问题转化为向量问题或者斜率乘积问题;面积问题要不直接求解,要不切割成几部分分别求解;点差法这些都是基础题型+训练哦。

6.选做题

都是比较简单一些的,所以你熟悉哪个做哪个就好。

高中数学快速解题方法技巧

方法1、熟悉基本的解题步骤和解题方法

解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。

方法2、审题要认真仔细

对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。所以,在实际解题时,应特别注意,审题要认真、仔细。

方法3、认真做好归纳总结

在解过一定数量的习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

方法4、熟悉习题中所涉及的内容

解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

方法5、学会画图

画图是一个翻译的'过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。有些题目,只要分析图一画出来,其中的关系就变得一目了然。尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

方法6、先易后难,逐步增加习题的难度

人们认识事物的过程都是从简单到复杂。简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。

我们在学习时,应根据自己的能力,先去解那些看似简单,却很重要的习题,以不断提高解题速度和解题能力。随着速度和能力的提高,再逐渐增加难度,就会达到事半功倍的效果。

方法7、限时答题,先提速后纠正错误

很多同学做题慢的一个重要原因就是平时做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。所以,提高解题速度就要先解决“拖延症”。比较有效的方式是限时答题,例如在做数学作业时,给自己限时,先不管正确率,首先保证在规定时间内完成数学作业,然后再去纠正错误。这个过程对提高书写速度和思考效率都有较好的作用。你习惯了一个较快的思考和书写后,解题速度自然就会提高,及改正了拖延的毛病,也提高了成绩。