-
相关文章
高三数学第二轮复习教案文案
2023-08-01 15:50:18最新初中七年级数学教案范文
2023-08-14 11:20:20初中数学教学计划表
2023-08-08 05:24:37初一趣味数学教案范文
2023-08-14 00:04:28小学数学上册二年级教案最新例文
2023-08-08 22:23:05新版北师大版二年级下册数学教案最新模板
2023-08-03 02:14:11最新一年级数学跷跷板教案模板
2023-08-05 17:37:25中考复习指导化学总结三篇
2023-08-17 23:21:12电子版应聘简历模板五篇
2023-08-01 22:05:40高三数学第二轮复习教案文案
2023-08-01 15:50:18应届毕业生简历优秀范本五篇
2023-08-04 22:23:31
最新初一数学课题完整教案文案
最新初一数学课题完整教案文案1
教学目标
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
教学建议
(一)重点、难点分析
本节课的重点是依据运算法则和运算律准确迅速地进行,难点是省略加号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,这是因为有理数加、减混合算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)知识结构
(三)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如
-3-4表示-3、-4两数的代数和,
-4+3表示-4、+3两数的代数和,
3+4表示3和+4的代数和
等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如
12-5+7 应变成 12+7-5,而不能变成12-7+5。
教学设计示例一
(一)
一、素质教育目标
(一)知识教学点
1.了解:代数和的概念.
2.理解:有理数加减法可以互相转化.
3.应用:会进行加减混合运算.
(二)能力训练点
培养学生的口头表达能力及计算的准确能力.
(三)德育渗透点
通过学习一切加减法运算,都可以统一成加法运算,继续渗透数学的转化思想.
(四)美育渗透点
学习了本节课就知道一切加减法运算都可以统一成加法运算.体现了数学的统一美.
二、学法引导
1.教学方法:采用尝试指导法,体现学生主体地位,每一环节,设置一定题目进行巩固练习,步步为营,分散难点,解决关键问题.
2.学生写法:练习→寻找简单的一般性的方法→练习巩固.
三、重点、难点、疑点及解决办法
1.重点:把加减混合运算算式理解为加法算式.
2.难点:把省略括号和的形式直接按有理数加法进行计算.
四、课时安排
1课时
五、教具学具准备
投影仪或电脑、自制胶片.
六、师生互动活动设计
教师提出问题学生练习讨论,总结归纳加减混合运算的一般步骤,教师出示练习题,学生练习反馈.
七、教学步骤
(一)创设情境,复习引入
师:前面我们学习了有理数的加法和减法,同学们学得都很好!请同学们看以下题目:
-9+(+6);(-11)-7.
师:(1)读出这两个算式.
(2)“+、-”读作什么?是哪种符号?
“+、-”又读作什么?是什么符号?
学生活动:口答教师提出的问题.
师继续提问:(1)这两个题目运算结果是多少?
(2)(-11)-7这题你根据什么运算法则计算的?
学生活动:口答以上两题(教师订正).
师小结:减法往往通过转化成加法后来运算.
【教法说明】为了进行,必须先对有理数加法,特别是有理数减法的题目进行复习,为进一步学习加减混合运算奠定基础.这里特别指出“+、-”有时表示性质符号,有时是运算符号,为在混合运算时省略加号、括号时做必要的准备工作.
师:把两个算式-9+(+6)与(-11)-7之间加上减号就成了一个题目,这个题目中既有加法又有减法,就是我们今天学习的.(板书课题2.7(1))
教学说明:由复习的题目巧妙地填“-”号,就变成了今天将学的加减混合运算内容,使学生更形象、更深刻地明白了有理数加减混合运算题目组成.
(二)探索新知,讲授新课
1.讲评(-9)+(-6)-(-11)-7.
(1)省略括号和的形式
师:看到这个题你想怎样做?
学生活动:自己在练习本上计算.
教师针对学生所做的方法区别优劣.
【教法说明】题目出示后,教师不急于自己讲评,而是让学生尝试,给了学生一个展示自己的机会,这时,有的学生可能是按从左到右的顺序运算,有的同学可能是先把减法都转化成了加法,然后按加法的计算法则再计算……这样在不同的方法中,学生自己就会寻找到简单的、一般性的方法.
师:我们对此类题目经常采用先把减法转化为加法,这时就成了-9,+6,+11,-7的和,加号通常可以省略,括号也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7.
提出问题:虽然加号、括号省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以这个算式可以读成……
学生活动:先自己练习尝试用两种读法读,口答(教师纠正).
【教法说明】教师根据学生所做的方法,及时指出代表性的方法来给学生指明方向,在把算式写成省略括号代数和的形式后,通过让学生练习两种读法,可以加深对此算式的理解,以此来训练学生的观察能力及口头表达能力.
巩固练习:(出示投影1)
1.把下列算式写成省略括号和的形式,并把结果用两种读法读出来.
(1)(+9)-(+10)+(-2)-(-8)+3;
(2)+()-()-().
2.判断
式子-7+1-5-9的正确读法是().
A.负7、正1、负5、负9;
B.减7、加1、减5、减9;
C.负7、加1、负5、减9;
D.负7、加1、减5、减9;
学生活动:1题两个学生板演,两个学生用两种读法读出结果,其他同学自行演练,然后同桌读出互相纠正,2题抢答.
【教法说明】这两题旨意在巩固怎样把加减混合运算题目都转化成加法运算写成代数和的形式,这里特别注意了代数和形式的两种读法.
2.用加法运算律计算出结果
师:既然算式能看成几个数的和,我们可以运用加法的运算律进行计算,通常同号两数放在一起分别相加.
-9+6+11-7
=-9-7+6+11.
学生活动:按教师要求口答并读出结果.
巩固练习:(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
学生活动:讨论后回答.
【教法说明】学生运用加法交换律时,很可能产生“-9+7+11-6”这样的错误,教师先让学生自己去做,然后纠正,又做一组巩固练习,使学生牢固掌握运用加法运算律把同号数放在一起时,一定要连同前面的符号一起交换这一知识点.
师:-9-7+6+11怎样计算?
学生活动:口答
[板书]
-9-7+6+11
=-16+17
=1
巩固练习:(出示投影3)
1.计算(1)-1+2-3-4+5;
(2).
2.做完前面两个题目计算:(1)(+9)-(+10)+(-2)-(-8)+3;
(2).
学生活动:四个同学板演,其他同学在练习本上做.
【教法说明】针对一道例题分成三部分,每一部分都有一组相应的巩固练习,这样每一步学生都掌握得较牢固,这时教师一定要总结有理数加减混合运算的方法,使分散的知识有相对的集中.
师小结:有理数加减法混合运算的题目的步骤为:
1.减法转化成加法;
2.省略加号括号;
3.运用加法交换律使同号两数分别相加;
4.按有理数加法法则计算.
(三)反馈练习
(出示投影4)
计算:(1)12-(-18)+(-7)-15;
(2).
学生活动:可采用同桌互相测验的方法,以达到纠正错误的目的.
【教法说明】这两个题目是本节课的重点.采用测验的方式来达到及时反馈.
(四)归纳小结
师:1.怎样做加减混合运算题目?
2.省略括号和的形式的两种读法?
学生活动:口答.
【教法说明】小结不是教师单纯的总结,而是让学生参与回答,在学生思考回答的过程中将本节的重点知识纳入知识系统.
八、随堂练习
1.把下列各式写成省略括号的和的形式
(1)(-5)+(+7)-(-3)-(+1);
(2)10+(-8)-(+18)-(-5)+(+6).
2.说出式子-3+5-6+1的两种读法.
3.计算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
九、布置作业
(一)必做题:1.计算:(1)-8+12-16-23;
(2);
(3)-40-28-(-19)+(-24)-(-32);
(4)-2.7+(-3.2)-(1.8)-2.2;
(二)选做题:(1)当时,,,哪个,哪个最小?
(2)当时,,,哪个,哪个最小?
十、板书设计
随堂练习答案
1.(1)-5+7+3-1;(2)10-8-18+5+6.
2.负3加5减6加1或负3、5、负6、1的和。
3.(1)-4;(2)-10.2;(3)-.
作业 答案
(一)必做题:1.(1)-35;(2);(3)-41;(4)-6.3
最新初一数学课题完整教案文案2
教学目标:
1.知识与技能
结合具体实例,进一步认识三角形的概念,掌握三角形三条边的关系.
2.过程与方法
通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理地表达能力.
3.情感、态度与价值观
联系学生的生活环境、创设情景,帮助学生树立几何知识源于实际、用于实际的观念,激发学生的学习兴趣.
教学重点难点:
1.重点
让学生掌握三角形的概念及三角形的三边关系,并能运用三边关系解决生活中的实际问题.
2.难点
探究三角形的三边关系应用三边关系解决生活中的实际问题.
教学设计:
本节课件设计了以下几个环节:回顾与思考、情境引入、三角形的概念、探索三角形三边关系、练习应用、课堂小结、探究拓展思考、布置作业.
第一环节 回顾与思考
1、如何表示线段、射线和直线?
2、如何表示一个角?
第二环节 情境引入
活动内容:让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.
活动目的:让学生能从生活中抽象出几何图形,感受到我们生活在几何图形的世界之中.培养学生善于观察生活、乐于探索研究的学习品质,从而更大地激发学生学习数学的兴趣
第三环节 三角形概念的讲解
(1)你能从中找出四个不同的三角形吗?
(2)与你的同伴交流各自找到的三角形.
(3)这些三角形有什么共同的特点?
通过上题的分析引出三角形的概念、三角形的表示方法及三角形的边角的表示方法.并出两道习题加以练习,从练习中归纳出三角形的三要素和注意事项.
第四环节 探索三角形三边关系
最新初一数学课题完整教案文案3
1.方程的简单变形
(广西大新县雷平中学 何勇新)
教学目的
通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。
重点、难点
1.重点:方程的两种变形。
2.难点:由具体实例抽象出方程的两种变形。
教学过程
一、引入
上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。
二、新授
让我们先做个实验,拿出预先准备好的天平和若干砝码。
测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。
如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。
如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?
让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。
问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?
学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。
问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?
让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?
把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?
由图(1)、(2)可归结为;
方程两边都加上或都减去同一个数或同一个整式,方程的解不变。
让学生观察(3),由学生自己得出方程的第二个变形。
即方程两边都乘以或除以同一个不为零的数,方程的解不变:
通过对方程进行适当的变形.可以求得方程的解。
例1.解下列方程
(1)x-5=7 (2)4x=3x-4
(1)解两边都加上5,x,x=7+5 即 x=12
(2)两边都减去3x,x=3x-4-3x 即 x=-4
请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?
这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。
例2.解下列方程
(1)-5x=2 (2) x=
这里的变形通常称为“将未知数的系数化为1”。
以上两个例题都是对方程进行适当的变形,得到x=a的形式。
练习:
课本第6页练习1、2、3。
练习中的第3题,即第2页中的方程①先让学生讨论、交流。
鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。
三、巩固练习
教科书第7页,练习
四、小结
本节课我们通过天平实验,得出方程的两种变形:
1.把方程两边都加上或减去同一个数或整式方程的解不变。
2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。
五、作业
教科书第7—8页习题6.2.1第1、2、3。
最新初一数学课题完整教案文案4
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328 (1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业 。教科书第3页,习题6.1第1、3题。
最新初一数学课题完整教案文案5
教学目标
让学生熟练地进行有理数加减混合运算,并利用运算律简化运算.
教学重点和难点
重点:加减运算法则和加法运算律.
难点:省略加号与括号的代数和的计算.
课堂教学过程 设计
一、从学生原有认知结构提出问题
什么叫代数和?说出-6+9-8-7+3两种读法.
二、讲授新课
1.计算下列各题:
2.计算:
(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;
(7)-6-8-2+3.54-4.72+16.46-5.28;
3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:
(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;
(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;
(9)(a-c)-(b-d);(10)a-c-b+d.
请同学们观察一下计算结果,可以发现什么规律?
a-(b+c)=a-b-c;
a-(b+c+d)=a-b-c-d;
a-(b-d)=a-b+d;
(a+b)-(c+d)=a+b-c-d;
(a-c)-(b-d)=a-c-b+d.
括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变.
4.用较简便方法计算:
(4)-16+25+16-15+4-10.
三、课堂练习
1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:
(1)两个数相加,和一定大于任一个加数.()
(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()
(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号.()
(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()
(5)两数差一定小于被减数.()
(6)零减去一个数,仍得这个数.()
(7)两个相反数相减得0.()
(8)两个数和是正数,那么这两个数一定是正数.()
2.填空题:
(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______.
(2)若a<0,那么a和它的相反数的差的绝对值是______.
(3)若|a|+|b|=|a+b|,那么a,b的关系是______.
(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.
(5)-[-(-3)]=______,-[-(+3)]=______.
这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化.
四、作业
1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:
(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.
2.分别根据下列条件求代数式x-y-z+w的值:
(1)x=-3,y=-2,z=0,w=5;
(2)x=0.3,y=-0.7,z=1.1,w=-2.1;
3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:
(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.
4.(1)当b>0时,a,a-b,a+b,哪个?哪个最小?
(2)当b<0时,a,a-b,a+b,哪个?哪个最小?
5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例.
(1)若a,b同号,则a+b=|a|+|b|.()
(2)若a,b异号,则a+b=|a|-|b|.()
(3)若a<0、b<0,则a+b=-(|a|+|b|).()
(4)若a,b异号,则|a-b|=|a|+|b|.()
(5)若a+b=0,则|a|=|b|.()
6.计算:(能简便的应当尽量简便运算)
课堂教学设计说明
1.本课时是习题课.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能.讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要求学生了解,并不要求追究所以然.