-
相关文章
高二重要数学公式归纳总结
2023-08-06 09:06:34高中数学重要公式总结归纳大全常用
2023-08-09 03:39:02学前班数学老师的规范经验教学反思五篇
2023-08-03 00:16:15中学数学教学工作总结范文7篇
2023-08-11 17:09:21小学数学上册二年级教案最新例文
2023-08-08 22:23:05新版北师大版二年级下册数学教案最新模板
2023-08-03 02:14:11最新一年级数学跷跷板教案模板
2023-08-05 17:37:25免费的电子版个人简历模板五篇
2023-08-15 01:49:14上海中考分数线信息整理
2023-08-02 16:19:20高二重要数学公式归纳总结
2023-08-06 09:06:34超市标准租赁合同五篇最新
2023-08-09 22:52:47
苏教版高中常考数学公式归纳大全
高中数学诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα (k∈Z)
cos(2kπ+α)=cosα (k∈Z)
tan(2kπ+α)=tanα (k∈Z)
cot(2kπ+α)=cotα (k∈Z)
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的.三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
注意:在做题时,将a看成锐角来做会比较好做。
三角形的面积公式
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)
和:(a+b+c)_(a+b-c)_1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
则三角形面积=abc/4r
已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)
| a b 1 |
S△=1/2 _ | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC
| e f 1 |
选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小
立体几何公式
名称符号面积S体积V
正方体a——边长S=6a^2V=a^3
长方体a——长S=2(ab+ac+bc)V=abc
b——宽
c——高
棱柱S——底面积V=Sh
h——高
棱锥S——底面积V=Sh/3
h——高
棱台S1和S2——上、下底面积V=h〔S1+S2+√(S1^2)/2〕/3
h——高
拟柱体S1——上底面积V=h(S1+S2+4S0)/6
S2——下底面积
S0——中截面积
h——高
圆柱r——底半径C=2πrV=S底h=∏rh
h——高
C——底面周长
S底——底面积S底=πR^2
S侧——侧面积S侧=Ch
S表——表面积S表=Ch+2S底
S底=πr^2
空心圆柱R——外圆半径
r——内圆半径
h——高V=πh(R^2-r^2)
直圆锥r——底半径
h——高V=πr^2h/3
圆台r——上底半径
R——下底半径
h——高V=πh(R^2+Rr+r^2)/3
球r——半径
d——直径V=4/3πr^3=πd^2/6
球缺h——球缺高
r——球半径
a——球缺底半径a^2=h(2r-h)V=πh(3a^2+h^2)/6=πh2(3r-h)/3
球台r1和r2——球台上、下底半径
h——高V=πh[3(r12+r22)+h2]/6
圆环体R——环体半径
D——环体直径
r——环体截面半径
d——环体截面直径V=2π^2Rr^2=π^2Dd^2/4
桶状体D——桶腹直径
d——桶底直径
h——桶高V=πh(2D^2+d2^)/12(母线是圆弧形,圆心是桶的中心)
V=πh(2D^2+Dd+3d^2/4)/15(母线是抛物线形)