高考在线
高考在线 >数学

高一数学教案北师大版例文

2023-08-15 06:17:42 高考在线

2021高一数学教案北师大版例文1

教学准备

教学目标

熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

教学重难点

熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。

教学过程

【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。_

【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差(或公比)等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。

一、基础训练

1.某种细菌在培养过程中,每20分钟_一次(一个_为两个),经过3小时,这种细菌由1个可繁殖成()

A、511B、512C、1023D、1024

2.若一工厂的生产总值的月平均增长率为p,则年平均增长率为()

A、B、

C、D、

二、典型例题

例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是(n-1)Ap……,第n期(即最后一期)的利息是Ap,问到第n期期末的本金和是多少?

评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期(存期+1)利率]

例2:某人从1999到2002年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到2003年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?

例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从2000年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠.问经过多少年的努力才能使全县的绿洲面积超过60%.(lg2=0.3)

例4、.流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数.

2021高一数学教案北师大版例文2

教学目标

1.掌握等比数列前项和公式,并能运用公式解决简单的问题.

(1)理解公式的推导过程,体会转化的思想;

(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;

2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想.

3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度.

教学建议

教材分析

(1)知识结构

先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的前项和.

(2)重点、难点分析

教学重点、难点是等比数列前项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法.等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况.

教学建议

(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题.

(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论.

(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣.

(4)编拟例题时要全面,不要忽略的情况.

(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.

(6)补充可以化为等差数列、等比数列的数列求和问题.

教学设计示例

课题:等比数列前项和的公式

教学目标

(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和.

(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质.

(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度.

教学重点,难点

教学重点是公式的推导及运用,难点是公式推导的思路.

教学用具

幻灯片,课件,电脑.

教学方法

引导发现法.

教学过程

一、新课引入:

(问题见教材第129页)提出问题:(幻灯片)

二、新课讲解:

记,式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.

(板书)即,①

,②

②-①得即.

由此对于一般的等比数列,其前项和,如何化简?

(板书)等比数列前项和公式

仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比,即

(板书)③两端同乘以,得

④,

③-④得⑤,(提问学生如何处理,适时提醒学生注意的取值)

当时,由③可得(不必导出④,但当时设想不到)

当时,由⑤得.

于是

反思推导求和公式的方法——错位相减法,可以求形如的数列的和,其中为等差数列,为等比数列.

(板书)例题:求和:.

设,其中为等差数列,为等比数列,公比为,利用错位相减法求和.

解:,

两端同乘以,得

两式相减得

于是.

说明:错位相减法实际上是把一个数列求和问题转化为等比数列求和的问题.

公式其它应用问题注意对公比的分类讨论即可.

三、小结:

1.等比数列前项和公式推导中蕴含的思想方法以及公式的应用;

2.用错位相减法求一些数列的前项和.

四、作业:略

2021高一数学教案北师大版例文3

教学准备

教学目标

知识目标:使学生掌握等比数列的定义及通项公式,发现等比数列的一些简单性质,并能运用定义及通项公式解决一些实际问题。

能力目标:培养运用归纳类比的方法发现问题并解决问题的能力及运用方程的思想的计算能力。

德育目标:培养积极动脑的学习作风,在数学观念上增强应用意识,在个性品质上培养学习兴趣。

教学重难点

本节的重点是等比数列的定义、通项公式及其简单应用,其解决办法是归纳、类比。

本节难点是对等比数列定义及通项公式的深刻理解,突破难点的关键在于紧扣定义,另外,灵活应用定义、公式、性质解决一些相关问题也是一个难点。

教学过程

二、教法与学法分析

为了突出重点、突破难点,本节课主要采用观察、分析、类比、归纳的方法,让学生参与学习,将学生置于主体位置,发挥学生的主观能动性,将知识的形成过程转化为学生亲自探索类比归纳的过程,使学生获得发现的成就感。在这个过程中,力求把握好以下几点:_

①通过实例,让学生发现规律。让学生在问题情景中,经历知识的形成和发展,力求使学生学会用类比的思想去看待问题。②营造_的教学氛围,把握好师生的情感交流,使学生参与教学全过程,让学生唱主角,老师任导演。③力求反馈的全面性、及时性。通过精心设计的提问,让学生思维动起来,针对学生回答的问题,老师进行适当的调控。④给学生思考的时间和空间,不急于把结果抛给学生,让学生自己去观察、分析、类比得出结果,老师点评,逐步养成科学严谨的学习态度,提高学生的推理能力。⑤以启迪思维,启发有度,留有余地,导而弗牵,牵而弗达。这样做增加了学生的参与机会,增强学生的参与意识,教给学生获取知识的途径和思考问题的方法,使学生真正成为教学的主体,使学生学会学习,提高学生学习的兴趣和能力。

三、教学程序设计

(4)等差中项:如果a、A、b成等差数列,那么A叫做a与b的等差中项。

说明:通过复习等差数列的相关知识,类比学习本节课的内容,用熟知的等差数列内容来分散本节课的难点。

2.导入新课

本章引言中关于在国际象棋棋盘各格子里放麦粒的问题中,各个格子的麦粒数依次是:

1,2,4,8,…,263

再来看两个数列:

5,25,125,625,...

···

说明:引导学生通过“观察、分析、归纳”,类比等差数列的定义得出等比数列的定义,为进一步理解定义,给出下面的问题:

判定以下数列是否为等比数列,若是写出公比q,若不是,说出理由,然后回答下面问题。

-1,-2,-4,-8…

-1,2,-4,8…

-1,-1,-1,-1…

1,0,1,0…

提出问题:(1)公比q能否为零?为什么?首项a1呢?

(2)公比q=1时是什么数列?

(3)q>0是递增数列吗?q<0递减吗?

说明:通过师生问答,充分调动学生学习的主动性及学习热情,活跃课堂气氛,同时培养学生的口头表达能力和临场应变能力。另外通过趣味性的问题,来提高学生的学习兴趣。激发学生发现等比数列的定义及其通项公式的强烈_。

3.尝试推导通项公式

让学生回顾等差数列通项公式的推导过程,引导推出等比数列的通项公式。

推导方法:叠乘法。

说明:学生从方法一中学会从特殊到一般的方法,并从次数中去发现规律,以培养学生的观察能力;另外回忆等差数列的特点,并类比到等比数列中来,培养学生的类比能力及将新知识转化到旧知识的能力。方法二是让学生掌握“叠乘”的思路。

4.探索等比数列的图像

等差数列的图像可以看成是直线上一群孤立的点构成的,观察等比数列的通项公式,你能得出什么结果?它的图像如何?

变式2.等比数列{an}中,a2=2,a9=32,求q.

(学生自己动手解答。)

说明:例1的目的是让学生熟悉公式并应用于实际,例2及变式是让学生明白,公式中a1,q,n,an四个量中,知道任意三个即可求另一个。并从这些题中掌握等比数列运算中常规的消元方法。

6.探索等比数列的性质

类比等差数列的性质,猜测等比数列的性质,然后引导推证。

7.性质应用

例3.在等比数列{an}中,a5=2,a10=10,求a15

(让学生自己动手,寻求多种解题方法。)

方法一:由题意列方程组解得

方法二:利用性质2

方法三:利用性质3

例4(见教材例3)已知数列{an}、{bn}是项数相同的等比数列,求证:{an·bn}是等比数列。

8.小结

为了让学生将获得的知识进一步条理化,系统化,同时培养学生的归纳总结能力及练习后进行再认识的能力,教师引导学生对本节课进行总结。

1、等比数列的定义,怎样判断一个数列是否是等比数列

2、等比数列的通项公式,每个字母代表的含义。

3、等比数列应注意那些问题(a1≠0,q≠0)

4、等比数列的图像

5、通项公式的应用(知三求一)

6、等比数列的性质

7、等比数列的概念(注意两点①同号两数才有等比中项

②等比中项有两个,他们互为相反数)

8、本节课采用的主要思想

——类比思想

9.布置作业

习题3.41②、④3.8.9.

10.板书设计

2021高一数学教案北师大版例文4

教学准备

教学目标

1、数学知识:掌握等比数列的概念,通项公式,及其有关性质;

2、数学能力:通过等差数列和等比数列的类比学习,培养学生类比归纳的能力;

归纳——猜想——证明的数学研究方法;

3、数学思想:培养学生分类讨论,函数的数学思想。

教学重难点

重点:等比数列的概念及其通项公式,如何通过类比利用等差数列学习等比数列;

难点:等比数列的性质的探索过程。

教学过程

教学过程:

1、问题引入:

前面我们已经研究了一类特殊的数列——等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)

2、新课:

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师:这就牵涉到等比数列的通项公式问题,回忆一下等差数列的通项公式是怎样得到的?类似于等差数列,要想确定一个等比数列的通项公式,要知道什么?

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)

3)等比数列的性质:

下面我们一起来研究一下等比数列的性质

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

3、例题巩固:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。_

答案:1458或128。

例2、正项等比数列{an}中,a6·a15+a9·a12=30,则log15a1a2a3…a20=_10____.

例3、已知一个等差数列:2,4,6,8,10,12,14,16,……,2n,……,能否在这个数列中取出一些项组成一个新的数列{cn},使得{cn}是一个公比为2的等比数列,若能请指出{cn}中的第k项是等差数列中的第几项?

(本题为开放题,没有的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)

1、小结:

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比——猜想——证明的科学思维的过程。

2、作业:

P129:1,2,3

思考题:在等差数列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些项:6,12,24,48,……,组成一个新的数列{cn},{cn}是一个公比为2的等比数列,请指出{cn}中的第k项是等差数列中的第几项?

教学设计说明:

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比——猜想——证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;

2)等比数列的通项公式的推导;

3)等比数列的性质;

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊——一般——特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的_,通过类比

关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

2021高一数学教案北师大版例文5

教学准备

教学目标

知识目标等差数列定义等差数列通项公式

能力目标掌握等差数列定义等差数列通项公式

情感目标培养学生的观察、推理、归纳能力

教学重难点

教学重点等差数列的概念的理解与掌握

等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用

教学过程

由_《红高粱》主题曲“酒神曲”引入等差数列定义

问题:多媒体演示,观察----发现?

一、等差数列定义:

一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。

例1:观察下面数列是否是等差数列:….

二、等差数列通项公式:

已知等差数列{an}的首项是a1,公差是d。

则由定义可得:

a2-a1=d

a3-a2=d

a4-a3=d

……

an-an-1=d

即可得:

an=a1+(n-1)d

例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。

分析:知道a1,d,求an。代入通项公式

解:∵a1=3,d=2

∴an=a1+(n-1)d

=3+(n-1)×2

=2n+1

例3求等差数列10,8,6,4…的第20项。

分析:根据a1=10,d=-2,先求出通项公式an,再求出a20

解:∵a1=10,d=8-10=-2,n=20

由an=a1+(n-1)d得

∴a20=a1+(n-1)d

=10+(20-1)×(-2)

=-28

例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。

分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n-1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。

解:由题意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n-1)×2=2n

练习

1.判断下列数列是否为等差数列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④-1,-8,-15,-22,-29;

答案:①不是②是①不是②是

等差数列{an}的前三项依次为a-6,-3a-5,-10a-1,则a等于()

A.1B.-1C.-1/3D.5/11

提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)

3.在数列{an}中a1=1,an=an+1+4,则a10=.

提示:d=an+1-an=-4

教师继续提出问题

已知数列{an}前n项和为……

作业

P116习题3.21,2