高考在线
高考在线 >数学

高一数学教案对数函数说课五篇最新

2023-08-13 05:31:59 高考在线

高一数学教案对数函数说课1

对数函数教案

1、 掌握对数函数的定义和图象,理解并记忆对数函数的性质。

2、 培养分析推理能力

3、 培

4、 重点:理解对数函数的定义,掌握对数函数的图像和性质。

5、 难点:底数a对数函数的影响 。首先复习对数的定义 师:上次讲细胞分裂问题时得到细胞个数y是分裂次数x的.函数。今天我们来研究相反的问题,如果要求这种细胞经过多次分裂,大约可以得到1万个,10万个等等,那么,分裂次数可以用怎样的关系式来表示呢?

生:表达式是x=log ,表示分裂次数x是细胞个数y的函数

师:如果用x表示自变量,y表示函数,此式又可化为y=logax ,那么它与指数函数有何关系?函数y=log ax的定义域是什么?

生:它们互为反函数,由于y= 的值域是{y|y>0}所以y=logax的定义域是{x|x>0} 师:对,由此我们就可以得到新的函数的定义。

(引入课题《对数函数的概念及性质》)一般地,函数y=log ax叫做对数函数,(a>0且a≠1)其中是自变量,定义域是{x|x>0}

高一数学教案对数函数说课2

学习对数函数的教案设计

教学目标

1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.

2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.

3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.

教学重点,难点

重点是理解对数函数的定义,掌握图像和性质.

难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.

教学方法

启发研讨式

教学用具

投影仪

教学过程

一. 引入新课

今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.

反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

提问:什么是指数函数?指数函数存在反函数吗?

由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:

由 得 .又 的值域为 ,

所求反函数为 .

那么我们今天就是研究指数函数的反函数-----对数函数.

二.对数函数的图像与性质 (板书)

1. 作图方法

提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.

由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

具体操作时,要求学生做到:

(1) 指数函数 和 的图像要尽量准确(关键点的`位置,图像的变化趋势等).

(2) 画出直线 .

(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

2. 草图.

教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图:

然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

3. 性质

(1) 定义域:

(2) 值域:

由以上两条可说明图像位于 轴的右侧.

(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

当 时,在 上是减函数,即图像是下降的.

之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

当 时,有 ;当 时,有 .

学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

对图像和性质有了一定的了解后,一起来看看它们的应用.

三.巩固练习

练习:若 ,求 的取值范围.

四.小结

五.作业 略

高一数学教案对数函数说课3

对数运算性质的应用教案设计

一、内容及其解析

(一)内容:对数运算性质的应用。

(二)解析:本节课是于对数运算性质的一节后延课,是高中新课改人教A版材第二章的第二节的第三节课.在此之前,学生已经学习过了对数的概念、指数与对数之间的关系,并且利用指数与对数的关系推导出了对数的运算性质,对数的换底公式就是在此基础上展开讨论的。本节课的重点是对数的换底公式;难点是换底公式的证明及应用。从指数与对数的.关系出发,证明对数换底公式,有多种途径,在中要让学生去探究,对学生的正确证法要给予肯定;证明得到对数的换底公式以后,要引导学生利用换底公式得到一些常见的结果,并处理一些求值转化的问题。

二、目标及其解析

(一)教学目标

1.掌握并能够证明对数的换底公式;

2.正确应用换底公式得到其变形结果,能利用它将对数转化为自然对数或常用对数来计算,体会转化与化归的数学思想;

3.通过本节课换底公式的证明及前一节课对数运算法则的推导过程,培养学生应用已有知识发现问题及解决问题的能力,体会数学内在的逻辑性,发现数学美,提高学生学习数学的热情。

(二)解析

1.掌握并能够证明对数的换底公式指的是:熟记换底公式,能够证明换底公式;

2.正确应用换底公式得到其变形结果指的是:能利用换底公式得到一些常见结论(即换底公式的变形公式),对于具体的求值问题,能够选择适当的底数进行转化,从而简化计算;

3.对数的运算性质及换底公式的推导和证明,可以有不同的顺序,各条性质之间有些也能互相推导,也可以转化为定义推导,对于具体的求值问题,可以应用不同的性质来解决,非常灵活,但不困难,题目做起来非常有趣;通过这部分内容,培养学生的数学能力,感受数学学科的特点,激发学生学习数学的兴趣。

三、问题诊断分析

本节课容易出现的问题是:针对具体问题学生不能选择适当的底数来应用换底公式。出现这一问题的原因是:学生对换底公式尚不太熟悉,转化的能力也有待提高。要解决这一问题,教师要通过对换底公式的变形公式的探究及具体的例子,让学生自主探究,必要时给予适当引导,让学生学会分析问题,逐步掌握换底公式的应用。

四、教学过程设计

(一)情景导入、展示目标

1.对数的运算性质:如果 a > 0 , a ? 1, M > 0 ,N > 0, 那么

(1)

(2) ;

(3) .

2.换底公式

其中

两个重要公式: ,

(二)合作探究、精讲点拨

例1.( 1).把下列各题的指数式写成对数式

(1) =16 (2) =1

解: (1) 2= 16 (2)0= 1

(2).把下列各题的对数式写成指数式

(1)x= 27 (2)x= 7

解:(1) =27 (2) =7

点评:本题主要考察的是指数式与对数式的互化.

例2计算: ⑴ ,⑵ ,⑶ ,⑷

解析:利用对数的性质解.

解法一:⑴设 则 , ∴

⑵设 则 , , ∴

⑶令 = ,

⑷令 , ∴ , , ∴

解法二:

点评:让学生熟练掌握对数的运算性质及计算方法.

例3.利用换底公式计算

(1)log25?log53?log32 (2)

解析:利用换底公式计算

点评:熟悉换底公式.

五.课堂目标检测

1.指数式化成对数式或对数式化成指数式

(1) =2 (2) =0.5 (3)x= 3

2.试求: 的值

3. 设 、 、 为正数,且 ,求证: .

六.小结

本节主要复习了对数的概念、运算性质,要熟练的进行指对互化并进行化简

高一数学教案对数函数说课4

第一册对数函数的应用

教学目标 :①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复

合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高

解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程 设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0

调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递

增,所以loga5.1

板书:

解:Ⅰ)当0

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

数 的'单调性比大小,②借用“中间量”间接比大小,③利用对数

函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

例 2 ⑴求函数y=的定义域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要

使函数有意义。若函数中含有分母,分母不为零;有偶次根式,

被开方式大于或等于零;若函数中有对数的形式,则真数大于

零,如果函数中同时出现以上几种情况,就要全部考虑进去,求

它们共同作用的结果。)

生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。

板书:

解:∵ 2x-1≠0 x≠0.5

log0.8x-1≥0 , x≤0.8

x>0 x>0

∴x(0,0.5)∪(0.5,0.8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解: x2+2x-3>0 x<-3 或 x>1

(3x+3)>0 , x>-1

x2+2x-3<(3x+3) -2

不等式的解为:1

例 3 求下列函数的值域和单调区间。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y=log0.5u, u=x- x2复合而成。

板书:

解:⑴∵u=x- x2>0, ∴0

u=x- x2=-(x-0.5)2+0.25, ∴0

∴y=log0.5u≥log0.50.25=2

∴y≥2

x x(0,0.5] x[0.5,1)

u=x- x2

y=log0.5u

y=log0.5(x- x2)

函数y=log0.5(x- x2)的单调递减区间(0,0.5],单调递 增区间[0.5,1)

注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则

函数都不存在,性质就无从谈起。

师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什

么区别?

生:⑴的底数是常值,⑵的底数是字母。

师:那么⑵如何来解?

生:只要对a进行分类讨论,做法与⑴类似。

板书:略。

⒊小结

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能

通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⒋作业

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0

⑶已知函数y=loga (a>0, b>0, 且 a≠1)

①求它的定义域;②讨论它的奇偶性; ③讨论它的单调性。

⑷已知函数y=loga(ax-1) (a>0,a≠1),

①求它的定义域;②当x为何值时,函数值大于1;③讨论它的

单调性。

高一数学教案对数函数说课5

一部分为对数函数的定义,图像及性质;第二部分为对数函数的应用。对数函数是在学习对数概念的基础上学习对数函数的概念和性质,通过学习对数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数以及对数函数的应用作好准备。

在教学过程中,我类比指数函数图象和性质的研究,研究了对数函数图象和性质。同学们课堂上能积极主动参与获得性质的过程。我用了三节课就对数函数的图象和性质,图象和性质的应用进行讲解。但是从作业和课堂效果看来。同学们没有指数函数的性质和图象掌握的好。特反思如下:

1、学生对对数函数概念的理解及对数的运算不过关。学生在做这些运算时有时不能灵活运用公式例如换底公式,有时学生会想当然地自己“发明”公式。导致部分题目出现运算错误或不会。

2、在利用对数函数的单调性比较两个对数式的大小书写格式不规范,因此在解题的过程中就把真数和底数混乱了,这说明同学们用函数的观点解决问题的思想方法还没形成。

3、在解有关求定义域的问题时,学生不能很好的掌握底数a的取值范围以及真数必修大于0.

4、同学们对对数与指数的互化不是很熟练。导致有关指数与对数互化题目出现错误。尤其是解决有关对数和指数混合式子的有关计算时困难很大,问题最多。还有在解决有关对数型函数定义域问题时,更不会用对数函数的单调性去解决。