-
相关文章
九年级上册数学高效教学计划五篇
2023-08-17 12:49:03最新高考数学一轮复习教案例文
2023-08-02 17:44:27最新九年级数学上册教案
2023-08-13 22:13:14高三数学选择填空解题技巧方法
2023-08-14 16:53:54小学数学上册二年级教案最新例文
2023-08-08 22:23:05新版北师大版二年级下册数学教案最新模板
2023-08-03 02:14:11最新一年级数学跷跷板教案模板
2023-08-05 17:37:25教师求职简历模板五篇
2023-08-06 18:21:22中考期间家长须知整理
2023-08-02 20:27:19优秀入党申请书标准格式版10篇
2023-08-08 04:11:44写朋友的初二优秀作文范文五篇
2023-08-12 08:23:46
高考数学一轮复习指导策略整理必看
高三数学第一轮复习策略
一、研读《考试大纲》,准确把握方向
认真研读考试说明、从宏观上准确把握《考试大纲》中的精神和考试性质,准确掌握考试的内容。近年来高考数学试题所反映的特点是:“稳定大局、落实考试大纲,调整难度、积极探索、注重创新能力和选拔功能”的指导思想,体现了“测试中学数学的基础知识、基本方法、基本技能、运算能力、逻辑推理能力、分析问题和解决问题的能力、突出数学思想方法的考查”的命题原则,以及坚持“出活题,考基础,考能力、强化创新意识、强化新课标理念”的原则。20_年的大纲与20_年的大纲在要求上也在不断的变化,例如将原来的“函数的应用举例,斜三角形解法举例,数学归纳法应用举例”三处中的“举例”删去。应用题命题要“贴近生活、背景公平、控制难度、体现数学的文化价值和数学的应用意识”,考虑学生的年龄特点和实践经验,使应用问题的难度符合考生的水平。另外04、05两年高考中理科试题数学选修Ⅱ的相关内容所占比例较大,约占24%,应引起我们足够的重视。注意“了解、理解、掌握”的细微变化。因而考试大纲是我们备考的准则,只有准确地把握它才能在备考中有的放矢,少走弯路,正确把握复习的方向和重难点,才能查缺补漏突破薄弱环节。
二、全面复习,突出重点
在总复习的第一阶段,要让学生吃透教材,全面、系统地掌握高中数学的基础知识,深刻理解基本概念,正确掌握定理、原理、法则、公式,并形成记忆、形成技能;把相关的知识相连结,融会贯通、着眼联系、互相渗透、灵活应用。所以,总复习不只是简单地重复课本,而是从问题的来龙去脉,从不同性质内容的分门别类,从了解、理解、掌握、灵活运用等不同层次的要求去组织教材、分析教材、消化教材,特别要注意把系统掌握课程内容的内在联系作为重点要求。对于重点内容,更要重点讲、重点用;总复习的学习任务是十分繁重的,共14章内容都是考查对象,其中有代数、三角、立体几何、解析几何、概率与统计、极限与导数等,涉及到概念公式非常多,因而抓住重点才能提高效率,在有意识地应用这些重点知识解决其它数学问题的过程中,深化认识,提高复习质量。
三、夯实基础,提炼方法
在第一轮复习要求学生打好基础,牢固掌握课本上的重点知识及常用的基本思想和方法。近两年来的高考数学试题的难度比较稳定,对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想和方法的理解;命题主要从学科整体意义和思想价值立意,另一个特点是强化对通性通法的考查,淡化特殊的技巧,这更加突出了对数学思想方法核心部分的考查。在复习时对通性通法扎实掌握,对基础知识、基本技能、基本思想和方法要引起足够重视,对应用面广,带有全局性、规律性、一般性的内容,让学生掌握到位,而对特殊的解题技巧要淡化,夯实学生的基础知识。
数学的思想方法是数学的精髓,只有运用数学思想方法,才能把数学的`知识与技能转化为分析问题和解决问题的能力,才能体现数学的学科特点,才能形成数学的素质,因此,在系统复习的阶段,一定要打好扎实的基础,深刻领会数学思想方法,以适应高考要求。例如解析几何的学科特点是用代数的方法研究、解决几何的问题,坐标系是建立代数与几何联系的桥梁,解题时既要善于把几何图形的形状、大小、位置关系等方面的问题通过坐标系转化为曲线方程,又要善于运用代数的方法解决几何问题。
高考试题中主要从以下几个方面对数学思想进行考察:(1)常用的数学方法:配方法、消元法、换元法、待定系数法、降次、数学归纳法、坐标法、参数法等。(2)数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等。(3)数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳与演绎等。(4)重要的思想:主要有函数和方程、数形结合思想、分类讨论思想、转化(化归)思想等。
只有扎扎实实的掌握了基础知识,反反复复地练习过程中,才能逐步掌握这些思想方法,才能形成自己的能力。
四、加强联系、形成知识网络
在第一轮复习时,注意加强课本上各知识点的联系,使学生对知识系统化网络化,加深对知识的理解和记忆。(1)、横向联系。数学考试中对数学知识的考查,特别注意“点”和“面”的结合。考查的面宽,知识点在每份试卷有100多个,例如函数是高中数学的主干,其知识和方法,与不等式、方程、数列、平面三角、解析几何、极限与导数的联系十分密切,相互渗透,相互为用,自然成为高考中考查的重点内容。向量是一个重要的运算工具,不能把它作为一个独立的单纯的知识点学习,应学会使用这个工具。例如,在复习向量有关知识时,平面向量与空间向量类比进行,同时,向量在立体几何、解析几何、三角等问题中如何应用这一工具。(2)、纵向联系。例如,函数是高中数学的一条主线,在高中数学中占有重要的地位,由于对函数知识的综合考查能够比较全面看出学生运用数学知识解决问题的能力,在高中数学学习中一直与我们形影不离,生活中也常有函数背景。所以高考中对函数的考查是一个重点。如在瞄准二次函数时,注意与一元二次方程、一元二次不等式、数列的结合,它们互相联系、互相渗透,使这个“知识块”处的知识交汇点多,内容异常丰富,求解时常用的基本知识有:二次方程根的分布、韦达定理、二次函数的图象及性质。在复习函数时,我们由函数的概念入手,到函数的性质:定义域、值域、图象、单调性、奇偶性、周期性、最(极)值、对称性、可逆性、连续性、可导性等十一个方面来学习。尤其是处理函数的最(极)值问题、值域问题、单调性问题、不等式等都可以用导数这一工具来解决,常使问题大大简化。同时总结中学数学的常见的函数:正比、反比、一次、二次、指数、对数、三角以及由它们复合而成的一些基本初等函数,较熟练地掌握它们的图象和性质。所以复习函数由浅入深,逐步到位。又如,排列、组合、二项式定理、概率与统计,实际上把这部分内容放在一块,主要是解决概率问题,最终将问题延伸到随机变量的分布列、期望问题。又如,在立体几何中直线与平面垂直的判定时,将判定的方法一一总结:定义法、判定定理、平行线法、平行平面法(垂直于两个平行平面中一个,则垂直于另一个)、垂面法(由面面垂直得线线垂直)、空间向量法(利用平面的法向量或坐标法),可以一步到位。第一轮复习中在课堂上对一些重点,难点概念要注意重点复习。对公式要求学生知道其来龙去脉,和记忆公式的方法,例如,在三角中公式非常多,内容多,知识点多。可大致分五类:三角函数的定义、图象、性质;同角公式;诱导公式及其记忆方法;由和角的余弦公式演绎出了差角公式、倍角公式、降幂公式等;三角形中的正弦、余弦定理。这样避免了将知识切成块来复习,加强了知识间的内在联系,加深了学生对知识的深刻理解和记忆。系统复习知识不是简单的重复和机械的记忆,而是要把所学的知识形成网络化,形成体系,基本达到综合、灵活应用的水平。
高考数学一轮复习策略
一、改进学习方法,培养良好的学习习惯
改进学习方法是一个长期性,系统积累的过程,一个人只有不断地接受新知识,不断地产生疑问,不断地总结,才能不断地提高。应通过与老师、同学平时的交流,逐步地总结出一般性的学习规律,它包括:制定计划、课前预习、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。
在课堂上应注意培养听课的好习惯。听是主要的,把老师讲的关键部分听懂,听的时候注意思考,分析问题,但是光听不记或光记不听,必然会顾此失彼,因此适当的记笔记,领会老师课上的意图和精神。在课堂、课外练习中应注意培养写作业的习惯,作业不仅要书写工整,而且还要有条理,这样可以培养逻辑能力。同时作业必须独立完成,培养一种独立思考的好习惯。
二、提高课堂效益的“四抓”
1. 抓知识的形成过程
数学的概念、定义、公式、定理等都是数学的基础,这些知识的形成过程容易被忽视。事实上,这些知识的形成过程正是数学能力的培养过程。一个定理的证明,往往是新知识的发现过程,在掌握知识的过程中,促进了能力的发展。如反函数概念如何形成?构造性的定义给出了求反函数的方法和步骤及互为反函数其图象的对称关系。
2. 抓问题的暴露
在课堂上,老师都会提问,有时还伴随着问题的讨论,对于典型问题,带有普遍性的问题必须及时解决,不能把问题遗留下来,甚至积累下来,发现问题应及时解决,遗留问题要及时解决。
3.抓解题指导
要合理选择简捷的运算途径,这不仅是迅速运算的需要,也是运算准确性的需要,运算的步骤越大,出错的可能性也就越大。因而根据问题的条件和要求,合理地选择简捷的运算途径,不但是提高运算能力的关键,也是提高其它数学能力的有效途径。如给定两个集合如何构成映射,能构成多少个映射?如何构成函数,能构成多少个函数等。
4.抓数学思维方法的训练
数学学科担负着培养运算能力、逻辑思维能力、空间想象能力以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的应用性,对能力的要求较高。数学能力只有在数学思想方法不断应用中才能得到培养和提高。
三、学会数学复习的归纳总结
1.抓基础
(1)结合“边看边记,温故知新系统”的填空提示,预习课本中所涉及的基本知识、公式、定义和定理,着重于自己感到的重点、难点、疑点的再学习和再认识,重视基本概念、基本理论,并强化记忆;
(2)结合“落实双基,稳步提高”的练习,遇到概念解题时要对概念的内涵和外延再认识;理解定理的条件对结论的约束作用,并反问:如果没有该条件会使定理的结论发生什么变化?如三垂线定理若缺少直线在平面内将有什么结果?
(3)“举一反三,触类旁通”,对典型例题师生共同赏析,在教师的指导下,注重如何把握思维的切入点,掌握各种题型的思路走向,揣摩命题者的意图,归纳全面的解题方法。只有积累一定的典型习题才能保证解题方法的准确性、简捷性和完备性;
(4)认真做好练习题,采用循环交替、螺旋式推进的方法,避免出现对基本知识、基本方法遗忘的现象。
2.构建知识网络结构
认识课本知识间的横向联系,了解各部分内容在高考中所占的分值、地位和难易程度,有针对性地复习、梳理重点内容,突破自己的薄弱环节,力求从宏观上把握高中数学的知识体系,建立自己的解题方法体系和思维体系。
3.全面认识与掌握高中常用的数学思想方法
高中数学学习过程中所接触到的数学思想方法一般分为三类:第一类是用于解题的具体操作性的方法,如配方法、换元法、消元法、待定系数法、判别式法、错位相减法、迭代法、割补法、特值法等;第二类则是用于指导解题的逻辑性的方法,如综合法、分析法、反证法、类比法、探索法、归纳法、解析法等;第三类则是在数学学习过程中形成的对于数学解题甚至于对于其它问题的解决都具有宏观指导意义的数学思想方法,如函数思想、方程思想、数形结合思想、分类与整合思想、化归与转化思想等。复习中要关注它们的应用,形成学以致用的习惯。
4.进行解题后的再思考
思因果
解题后,要思考在解题过程中运用了哪些知识点、已知条件及它们之间的联系,还有哪些条件没有用过,结果与题意或实际生活是否相符等。这样可促使我们进行大胆探索,发现规律,从而激发创造性思维。
思规律
解题后,要注意思考所用的方法,认真总结规律,以达到举一反三的目的,这样有利于强化知识的理解和运用,提高知识的迁移能力。
思多解
在解题中采用多种解法,不仅可以锻炼我们思维的发散性,而且可以培养我们综合运用所学知识解决问题的能力。
思变通
对于一道题不应局限于就题论题上,而要进行适当的变化引申,在培养思维变通性的同时让我们的思维变得更加深刻流畅。一题变多题,有利于开阔眼界,拓宽思路,提高应变能力,防止思维定势。
思归纳
解题后,回忆与该题同类的习题,进行对比,分析其解法,找到解这一类题的技巧和方法,从而达到触类旁通的目的,久而久之便形成技巧,解题效率自然会大大提高。
思错误
解题后,要思考题中易混易错的地方,总结经验,提高辨析错误的能力。
5.错题存档,真正做到“吃一堑长一智”
分清错误的原因:概念模糊、粗心大意、顾此失彼、图形画错、思路问题等等,老师评讲试卷时,要注意对错题的分析讲解,该题的引入语、解题的切入口、思路突破方法、解题的技巧、规范步骤及小结的讲解等等,并在错题的一边注释解题过程,找出做题时障碍产生的原因及根源的分析。整理错题集时,一定要有恒心和毅力,不要在乎时间的多少,对于相关知识点的整理与总结,虽然工作繁杂,但其作用决不仅仅是明白了一道错题怎样求解这么简单,更重要的是通过整理“错题集”,你将学会如何学数学、如何研究数学,掌握哪些知识点在将来的学习中,真正做到“吃一堑长一智”。
高考数学一轮复习高效策略指导
一、回归课本,注重基础,重视预习
回归课本,自已先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。
二、提高课堂听课效率,勤动手,多动脑
高三的课只有两种形式:复习课和评讲课,到高三所有课都进入复习阶段,通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要有自已的思考,听课的目的就明确了。现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。此外还要特别注意老师讲课中的提示。作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等做出简单扼要的记录,以便复习,消化,思考。例习题的解答过程留在课后去完成,没记的地方留点空余的地方,以备自己的感悟。
三、以“错”纠错,查漏补缺
这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。每次订正试卷或作业时,在做错的试题旁边要写明做错的原因大致可分为以下几类:
1、找不到解题着手点。
2、概念不清、似懂非懂。
3、概念或原理的应用有问题。
4、知识点之间的迁移和综合有问题。
5、情景设计看不懂。
6、不熟练,时间不够。
7、粗心,或算错。以上方法经过一个阶段自查,建立一份个人补差档案。通过边查边改,重复犯的错误一定会越来越少。同时,随着自我认识的不断完善,也有利于考试时增强自信心,消除紧张情绪。
四、做好每一章知识的系统总结
1、做好每一天的复习。上完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。我们可以简记为“一分钟的回忆法”。
2、做好单元复习。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
3、做好单元小结。单元小结内容应包括以下部分。
(1)本单元(章)的知识网络;
(2)本章的基本思想与方法(应以典型例题形式将其表达出来);
(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
五、适量训练是学好数学的保证
学好数学要做大量的题,但反过来做了大量的题,数学不一定好,“不要以做题多少论英雄”,因此要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。1、要有针对性地做题,典型的题目,应该规范地完成,同时还应了解自己,有选择地做一些课外的题;2、要循序渐进,由易到难,要对做过了典型题目有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题,这样做能起到事半功倍的效果。3、是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。4、尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。5、独立思考是数学的灵魂,遇到不懂或困难的问题时,要坚持独立思考,不轻易问人,不要一遇到不会的东西就马上去问别人,自己不动脑子,专门依赖别人,而是要自己先认真地思考一下,依靠自己的努力克服其中的某些困难,经过很大的努力仍不能解决的问题,再虚心请教别人,请教时,不要把问题问得太透。学会提出问题,提出问题往往比解决问题更难,而且也更重要。
六、养成良好的解题习惯
如仔细阅读题目,看清数字,规范解题格式,部分同学自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。
七、分析试卷:将存在问题分类
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类,可如下分类:
第一类问题———遗憾之错。就是分明会做,反而做错了的题;比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如角的单位混用等。出现这类问题是考试后最后悔的事情。
消除遗憾要消除遗憾必须弄清遗憾的原因,然后找出解决问题的办法,如“审题之错”,是否出在急于求成?可采取“一慢一快”战术,即审题要慢、答题要快。“计算错误”,是否由于草稿纸用得太乱等。建议将草稿纸对折分块,每一块上演算一道题,有序排列便于回头查找。“抄写之错”,可以用检查程序予以解决。“表达之错”,注意表达的规范性,平时作业就严格按照规范书写表达,学习高考评分标准写出必要的步骤,并严格按着题目要求规范回答问题。
第二类问题———似非之错。记忆的不准确,理解的不够透彻,应用得不够自如;回答不严密、不完整;第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。弄懂似非“似是而非”是自己记忆不牢、理解不深、思路不清、运用不活的内容。这表明你的数学基础不牢固,一定要突出重点,夯实基础。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法;当然数学的学习要有一定题量的积累,才能达到举一反三、运用自如的水平。
第三类问题———无为之错。由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。力争有为在高三复习的第一轮中,不要做太难的题和综合性很强的题目,因为综合题大多是由几道基础题组成的,只有夯实了基础,做熟了基础题目,掌握了基本思想和方法,综合题才能迎刃而解。在高三复习时间较紧的情况下,第一阶段要有所为,有所不为,但平时考试和老师留的经过筛选的题目要会做,要做好。