高考在线
高考在线 >数学

六年级数学线段图教案模板

2023-08-13 01:45:56 高考在线

六年级数学线段图教案2021模板1

教学目标:

1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

2、通过练习,巩固对正比例意义的认识。

3、情感、态度与价值观:初步渗透函数思想。

重点难点:

能根据数量关系式或图象判断两种量是否成正比例。

教学准备:

投影仪。

教学过程:

一、新课讲授

教学第46页内容。

教师出示表格(见书),依据表中的数据描点。(见书)

师:从图中你发现了什么?

生:这些点都在同一条直线上。

看图回答问题

①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是4.0的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

你还能提出什么问题?有什么体会?

组织学生分小组汇报,学生汇报时可能会说出

①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

二、练习讲授

1、基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

①出示下表,填表。

一列火车行驶的时间和路程

②填表并思考发现了什么?

③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

⑤用式子表示它们的关系: 路程÷时间 =速度(一定)。

教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

2、指导练习。

(1)完成教材第49页第2题。

(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。

②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。

提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

三、课堂作业

1、根据x和y成正比例关系,填写表中的空格。

2、看图回答问题。

(1)在这一过程中,哪个量没变?

(2)路程和时间有什么关系?

(3)不计算,从图中看出4小时行驶多少千米?

(4)7小时行驶多少千米?

课堂小结:

教师:判断两个相关联的量成正比例的三个要素是什么?

通过这节课的学习,你有什么收获?

课后作业:

完成练习册中本课时的练习。

板书设计:

正比例图像

图像:一条过原点的直线。

六年级数学线段图教案2021模板2

教学目标:

1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

3.结合丰富的事例,认识正比例。

教学重点:

1、结合丰富的事例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:课件

教学过程:

一、 课前预习

预习书19---21页内容

1、填好书中所有的表格

2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

3、把不理解的内容用笔作重点记号,待课上质疑解答

二、展示与交流

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察思考成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁67891011

爸爸的年龄/岁3233

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

在老师的小结中感受并总结正比例关系的特征

六年级数学线段图教案2021模板3

教学目标:

1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。

2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。

3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

教学过程:

一、谈话导入

1. 出示苹果、梨、橘子的图片 问:起一个总的名称是什么?

2. 出示:仿照第一题填空

(1)时间:3小时 20分 2小时45分

(2)总价:5元 ( ) ( )

(3)( ):6千克 800克 3吨350克

填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?

二、学习新课

(一)相关联的量

教师做实验,向弹簧称上加钩码问:

(1) 这其中有哪两种变化着的量?(2)弹簧长度为什么会变化?

指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。

追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?

(二)学习成正比例的量

1、出示19页表格

观察图像,填表,回答下面的问题:

(1) 表中有哪两个相关联的量?

(2) 正方形的周长是怎样随着边长的变化而变化的?

(3) 正方形的面积是怎样随着边长的变化而变化的?

(4)它们的变化规律相同吗?

小组讨论交流汇报

2、20页第2题

3、正比例的意义

(1)例1和例2有什么共同点?(两种相关联的量,比值一定)

师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。

问:现在你知道什么叫成正比例的量了吗?自由说说 指生回答 阅读课本

师板书关系式:y/x=k(一定)

(2) 那么,要判断两种量是否成正比例的量该看什么呢?

三、 巩固提高:19页说一说。

四、 全课小结

六年级数学线段图教案2021模板4

教学内容:学习课本第一页的例1、完成“试一试”和“练一练”,练习一的第1至3题。

教学目标:

1.在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2.在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

教学重、难点:

理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

教学准备:

教学光盘及多媒体设备

教学过程:

一、复习导入

1.谈话:同学们,上学期我们已经初步学习了有关百分数的一些知识,知道百分数是表示一个数是另一个数的百分之几的数,还学习了解决求一个数是另一个数的百分之几的实际问题。你会解决下面的实际问题吗?

(出示下列题目,请学生解答。)

东山村去年原计划造林16公顷,实际造林24公顷。实际造林是原计划的百分之几?

五(1)班有男生25人,女生20人,女生人数是男生的百分之几?男生人数是女生的百分之几?

2.学生独立列式计算后进行交流,重点说说数量关系。

3.揭示课题:今天这节课我们继续学习有关百分数的知识。

二、教学例1

1.出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?

提出要求:根据这两个已知条件,你能求出哪些问题?

引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

2.引导思考:

这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位“1”?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?

小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

启发:根据上面的讨论,你打算怎样列式解答这个问题?

学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?

3.进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?

学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

联系学生的讨论明确:从125%中去掉与单位“1”相同的部分,就是实际造林比原计划多的百分数。

提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?

三、教学“试一试”

1.出示问题:原计划造林比实际少百分之几?

启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

学生作出猜想后,暂不作评价。

提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?

2.学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

四、指导完成“练一练”

1.要求学生自由读题。

2.提问:你是怎样理解“2005年在读研究生的人数比2004年增加了百分之几”这个问题的?

学生讨论后,要求他们各自列式解答。

3.根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

五、巩固练习

1.指导完成练习一第1~3题

做练习一第1题。

可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

做练习一第2题。

先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

做练习一第3题。

先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。

2.对比练习

(1)建造一个游泳池,计划投资100万元,实际投资80万元。实际投资比计划节约了百分之几?

(2)建造一个游泳池,计划投资100万元,实际投资比计划节约20万元。节约了百分之几?

(3)建造一个游泳池,实际投资100万元,比计划投资节约20万元。节约了百分之几?

学生读题后先独立思考并列式计算,然后指名分析每题的解题思路。同桌间互相查看解答情况。

3.拓展题。

(1)爸爸买的股票“中国石化”上周五收盘价是20元,本周五收盘价是24元。“中国石化”本周上涨了百分之几?(用两种方法解答)

(2)从南京开往淮安,甲车行了3小时到达,乙车行了4小时到达。甲车速度比乙车快百分之几?

六、全课小结

通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?今天你在课堂上的表现如何?你的同桌呢?

七、布置作业

1.课内作业:补充习题第1页。

求一个数比另一个数多(少)百分之几的实际问题

例题1 (线段图略)

解法一:先算实际造林比原计划多多少公顷    解法二:先算实际造林相当于原计划的百分之几

20-16=4(公顷)                20÷16=1.25=125%

4÷16=0.25=25%                125%-100%=25%

六年级数学线段图教案2021模板5

学习内容:完成课本第2~3页练习一第4至8题。

课堂目标:

1.帮助学生在不同的问题情境中巩固解决“求一个数比另一个数多(少)百分之几”问题的思考方法。

2.进一步明晰“求一个数比另一个数多(少)百分之几”与“求一个数是另一个数的百分之几”这两类问题的联系与区别,加深对解决相关问题的基本方法的思考。

教学准备:

教学光盘及多媒体设备

教学过程:

一、复习引入。

如何解决“求一个数比另一个数多(少)百分之几”的实际问题。你是怎样解决的?还有别的方法吗?

二、完成练习一第4~8题

1.完成第4题。

学生读题后独立解决。

交流,说说你是怎样解答的?解答第(2)题时还有别的方法吗?

比较这两题有什么不同?

2.完成第5题。

先让学生独立解答,然后组织交流和比较。

重点把第(2)、(3)题与第(1)题比较。

3.完成第6题。

指名学生读题,理解什么是“孵化期”。然后学生独立解答。交流检查正确率,帮助有困难的学生理解。

4.完成第7题。

学生读题,说说你是怎样理解的?

明确:“巧克力的价钱比奶糖贵百分之几”,就是“巧克力的价钱比奶糖多百分之几。”

学生解答后交流思考过程。

5.完成第8题。

学生独立解答。可以用计算器计算。完成后交流。

三、读读“你知道吗”

学生自主阅读。

交流:读完后你有什么想法?

思考:为什么不可以说2006年我国的国内生产总值增长幅度比2005年提高了0.3%?

突出单位1不同的两个百分数不能直接相减。

你还能举些有关百分点和负增长的例子吗?

四、拓展练习

1.甲数与乙数的比是4:5,乙数是甲数的( )%,甲数比乙数少()%。

2.一个长方形的长和宽各增加10%,面积增加(  )%。

3.一辆汽车,从甲地去乙地行驶了10小时,从乙地回甲地行驶了8小时。回来时比去时所用时间缩短了百分之几?速度提高了百分之几?

4.某小学六年级有四个班,由王、陈两位老师任教,这四个班的人数分别是:一班60人,二班40人,三班50人,四班50人。期末考试及格率的情况统计是:一班的及格率是95%,二班的及格率是85%(这两个班由王老师任教);三班的及格率是96%,四班的及格率是86%(这两个班由陈老师任教)。那么,这两位老师谁教的学生及格率更高一些呢?

五、全课小结

对自己本节课的学习情况进行评价:通过本节课的学习你有什么收获?课堂上你的练习情况如何?正确率高吗?

六、练习作业

1、作业:补充习题第2页