-
相关文章
最新青岛版七年级上册数学教案模板
2023-08-03 04:50:12展开与折叠苏教版数学初一上册教案
2023-08-17 00:18:11有理数的加法与减法苏教版数学初一上册教案
2023-08-06 10:11:11北师大版七年级数学上册教案模板
2023-08-13 20:41:09小学数学上册二年级教案最新例文
2023-08-08 22:23:05新版北师大版二年级下册数学教案最新模板
2023-08-03 02:14:11最新一年级数学跷跷板教案模板
2023-08-05 17:37:25观看榜样6节目观后感7篇
2023-08-10 01:14:09电子机械求职面试简历五篇
2023-08-02 07:28:18临沂生物考点初中
2023-08-06 04:15:47最新青岛版七年级上册数学教案模板
2023-08-03 04:50:12
七年级数学上册第一章教案设计
2021七年级数学上册第一章教案设计1
教学设计思路
以小组讨论的形式在教师的指导下通过回顾与反思前三章所学内容,领悟新旧知识之间的内在联系,总结知识结构及主要知识点,侧重对重点知识内容、数学思想和方法、思维策略的总结与反思,再通过练习巩固这些知识点。
教学目标
知识与技能
对前三章所学知识作一次系统整理,系统地把握这三章的知识要点;
通过回顾与反思这三章所学内容,领悟新旧知识之间的内在联系;
通过练习,对所学知识的认识深化一步,以有利于掌握;
发展观察问题、分析问题、解决问题的能力;
提高对所学知识的概括整理能力;
进一步发展有条理地思考和表达的能力。
过程与方法
在老师的引导下逐张复习每张的知识要点,通过练习来巩固这些知识点。
情感态度价值观
进一步体会知识点之间的联系;
进一步感受数形结合的思想。
教学重点和难点
重点是这三章的重点内容;
难点是能灵活利用这三章的知识来解决问题。
教学方法
引导、小组讨论
课时安排
3课时
教具学具准备
多媒体
教学过程设计
通过每一章的知识结构及一些相关问题引导学生总结出每一章的知识点。
2021七年级数学上册第一章教案设计2
一 说教材:
(一) 地位、作用:
本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册p80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用
(二) 教学目标:
1、 知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
2、 能力目标:培养学生探究思维能力和分析解决问题的能力
3、 情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。
(三) 重点、难点:
重点:有理数的减法法则,熟练地进行有理数的减法运算
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、多媒体辅助教学方法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
附教学工具:温度计、投影仪、多媒体
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教学程序:
(一) 引入课题环节:
1、 复习有理数的加法法则,为新课的讲授作好铺垫。
2、 (提问)用算式表示:与-3的和等于-10的数。
(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。
(二)新课讲解环节:
1、 通过投影仪给出以下算式:
减法 加法
(+10)-(+3)=+7 (+10)+(-3)=+7
让学生比较上面这两个算式并讨论后得出:
(+10)-(+3)=(+10)+(-3)
再给出以下算式:
减法 加法
(+5)-(+2)=+3 (+5)+(-2)=+3
继续让学生比较上面这两个算式并讨论后得出:
(+5)-(+2)=(+5)+(-2)
从而,它启发我们有理数的减法可以转化成加法进行
2、讲解课本p80的内容,回答复习题2提出的问题即如何求(-10)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。
文字叙述:减去一个数,等于加上这个数的相反数
字母表示:a-b=a+(-b) (说明:简明的表示方法,体现字母表示数的优越性,
实际运算时会更加方便)
强调运用法则时:被减数不变,减号变加号,减数变成其相反数
减数变号
(减法============加法)
3、出示温度计,用多媒体出现(如p81的图2-20),并进行动画演示,通过求15℃ 比5℃ 高多少?15℃ 比-5℃ 高多少?的实例来说明减法法则的合理性以及有理数减法的实际意义。同时进行练习反馈:课本p82的练习1,4、通过例题教学使学生巩固方法,初步具备解决问题的能力。
例1.计算 :(1) (-3)-(-5); (2) 0 - 7
例2.计算(1) 7.2 - (-4.8) ; (2) (-3 - ) - 5
说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。
(三) 巩固练习环节:
让学生完成课本p82的练习2、3,巩固有理数减法法则的运用,强化学生对这节课的掌握。第2题口答,第3题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。
(四) 课堂小结环节:(师生共同完成)
本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b)
(五)布置课后作业:课本p83习题2.6的2、3、4、5的偶数题
通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。(六)板书设计:(略)
2021七年级数学上册第一章教案设计3
一、教学目标
1.了解推理、证明的格式,理解判定定理的证法.
2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.
3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.
4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.
二、学法引导
1.教师教法:启发式引导发现法.
2.学生学法:积极参与、主动发现、发展思维.
三、重点·难点及解决办法
(一)重点
判定定理的推导和例题的解答.
(二)难点
使用符号语言进行推理.
(三)解决办法
1.通过教师正确引导,学生积极思维,发现定理,解决重点.
2.通过教师指导,学生自行完成推理过程,解决难点及疑点.
四、课时安排
1课时
五、教具学具准备
三角板、投影仪、自制胶片.
六、师生互动活动设计
1.通过设计练习,复习基础,创造情境,引入新课.
2.通过教师指导,学生探索新知,练习巩固,完成新授.
3.通过学生自己总结完成小结.
七、教学步骤
(一)明确目标
掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.
(二)整体感知
以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.
(三)教学过程
创设情境,复习引入
师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).
学生活动:学生口答第1、2题.
师:你能说出有什么条件,就可以判定两条直线平行呢?
学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.
教师将第3题图形画在黑板上.
学生活动:学生口答理由,同角的补角相等.
师:要求学生写出符号推理过程,并板书.
【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.
师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?
学生活动:同分内角.
师:它们有什么关系.
学生活动:互补.
师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.
2021七年级数学上册第一章教案设计4
教材分析
1、知识结构
2、重点、难点分析
重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性.
难点:推论证明的思路和方法.因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点.
(二) 教学建议
1、四个注意
(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的根据.
(2)注意:定理都是真命题,但真命题不一定都是定理.一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题.这些被选作定理的真命题,在教科书中是用黑体字排印的.
(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断.如“两直线平行,同位角相等”这个命题,如果只采用测量的方法.只能测量有限个两平行直线的同位角是相等的.但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等.
(4)注意:证明中的每一步推理都要有根据,不能“想当然”.①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由.
2、逐步渗透数学证明的思想:
(1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为……,所以……”句式,“如果……,那么……”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来.
(2)提高学生的“图形”能力,包括利用大纲允许的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方法.
(3)加强各种推理训练,一般应先使学生从“模仿”教科书的形式开始训练.首先是用自然语言叙述只有一步推理的过程,然后用简化的“三段论”方法表述出这一过程,再进行有两步推理的过程的模仿;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至三、四步的推理.在以上训练中,每一步推理的后面都应要求填注推理根据,这既可训练良好的推理习惯,又有助于掌握学过的命题.
教学目标:
1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.
2、能用符号语言写出一个命题的题设和结论.
3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.
教学重点:证明的步骤与格式.
教学难点:将文字语言转化为几何符号语言.
教学过程:
一、复习提问
1、命题“两直线平行,内错角相等”的题设和结论各是什么?
2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)
3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)
二、例题分析
例1、 证明:两直线平行,内错角相等.
已知:a∥b,c是截线.
求证:∠1=∠2.
分析:要证∠1=∠2,
只要证∠3=∠2即可,因为
∠3与∠1是对顶角,根据平行线的性质,
易得出∠3=∠2.
证明:∵a∥b(已知),
∴∠3=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
例2、 证明:邻补角的平分线互相垂直.
已知:如图,∠AOB+∠BOC=180°,
OE平分∠AOB,OF平分∠BOC.
求证:OE⊥OF.
分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.
三、课堂练习:
1、平行于同一条直线的两条直线平行.
2、两条平行线被第三条直线所截,同位角的平分线互相平行.
四、归纳小结
主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.
五、布置作业
课本P143 5、(2),7.
六、课后思考:
1、垂直于同一条直线的两条直线的位置关系怎样?
2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?
3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?
2021七年级数学上册第一章教案设计5
一、知识导航
1、主要概念:变量是 ;自变量是 ;因变量是 。
2、变量之间关系的三种表示方法: 。
其特点是:列表:对于表中自变量的每一个值,可以不通过计算,直接把 的值找到,查询方便;但是欠 ,不能反映变化的全貌,不易看出变量间的对应规律。
关系式:简明扼要、规范准确;但有些变量之间的关系很难或不能用关系式表示。图像:形象直观。可以形象地反映出事物变化的过程、变化的趋势和某些特征;但图像是近似的、局部的,由图像确定因变量的值欠准确。
3、主要数学思想方法:类比和比较的方法(举例说明);数形结合和数学建模思想(举例说明)。
二、学习导航
1、有关概念应用
例1下列各题中,那些量在发生变化?其中自变量和因变量各是什么?
① 用总长为60的篱笆围成一边长为L(m),面积为S(m2)的矩形场地;
②正方形边长是3,若边长增加x,则面积增加为y.
2、利用表格寻找变化规律
例2 研究表明,固定钾肥和磷肥的施用量,土豆的产量与氮肥的施用量有如下关系:
施肥量
(千克/公顷) 0 34 67 101 135 202 259 336 404 471
土豆产量
(吨/公顷) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75
上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?根据表格中的数据,你认为氮肥的使用量是多少时比较适宜?
变式(湖南)一辆小汽车在高速公路上从静止到起动10秒后的速度经测量如下表:
时间/秒 0 1 2 3 4 5 6 7 8 9 10
速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9
①上表反映了哪两个变量之间的关系?哪个是因变量?
②如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
③当t每增加1秒时,v的变化情况相同吗?在哪1秒中,v的增加?
④若高速公路上小汽车行驶的速度的上限为120千米/时,试估计大约还需要几秒小汽车速度就将达到这个上限?
3、用关系式表示两变量的关系
例3.、①设一长方体盒子高为10,底面积为正方形,求这个长方形的体积v与底面边长a的关系。②设地面气温是20℃,如果每升高1km,气温下降6℃,求气温与t高度h的关系。
变式(江西)如图,一个矩形推拉窗,窗高1.5米,则活动窗扇的通风面积A(平方米)与拉开长度b(米)的关系式是: .
4、用图像表示两变量的关系
例4、(桂林)今年,在我国内地发生了“非典型肺炎”疫情,在党和政府的正确领导下,目前疫情已得到有效控制.下图是今年5月1日至5月14日的内地新增确诊病例数据走势图(数据来源:卫生部每日疫情通报).从图中,可知道:
(1)5月6日新增确诊病例人数为 人;
(2)在5月9日至5月11日三天中,共新增确诊病例人数为 人;
(3)从图上可看出,5月上半月新增确诊病例总体呈 趋势.
例5、(陕西) 星期天晚饭后,小红从家里出去散步,下图描述了她散步过程中离家的距离s(米)与散步所用时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( ).
A.从家出发,到了一个公共阅报栏,看了一会儿报,就回家了
B.从家出发,到了一个公共阅报栏,看了一会儿报后,
继续向前走了一段,然后回家了
C.从家出发,一直散步(没有停留),然后回家了
D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返
变式 (成都)右图表示甲骑电动自行车和乙驾驶汽车沿相同路线行驶45千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据这个行驶过程中的图象填空:汽车出发 小时与电动自行车相遇;电动自行车的速度为 千米/时;汽车的速度为 千米/时;汽车比电动自行车早 小时到达B地.
三、一试身手
1、(贵阳)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y表示父亲与儿子行进中离家的距离,用横轴 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )
2、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余
部分的高度y(厘米)与燃烧时间x(小时)
之间的关系如图所示.
请根据图象所提供的信息解答下列问题:
(1)甲、乙两根蜡烛燃烧前的高度分别是 ,
从点燃到燃尽所用的时间分别是 ;
(2)燃烧多长时间时,甲、乙两根蜡烛的高度相等(不考虑都燃尽时的情况)?在什么时间段内,甲蜡烛比乙蜡烛高?在什么时间段内,甲蜡烛比乙蜡烛低?
3、(2006宿迁课改)小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )
A.8.6分钟 B.9分钟
C.12分钟 D.16分钟
4、某机动车出发前油箱内有油42l,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(L)之间的关系如图8 所示.
回答问题:(1)机动车行驶几小时后加油?
(2)中途中加油_________L;
(3)已知加油站距目的地还有 ,车速为 ,
若要达到目的地,油箱中的油是否够用?并说明原因.
5、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.
所挂质量
0 1 2 3 4 5
弹簧长度
18 20 22 24 26 28
(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)当所挂物体重量为 时,弹簧多长?不挂重物时呢?
(3)若所挂重物为 时(在允许范围内),你能说出此时的弹簧长度吗?
6、小明在暑期社会实距活动中,以每千克0.8元的价格从批发市场购进若干千克瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图9所示.请你根据图象提供的信息完成以下问题:
(1)求降价前销售金额y(元)与售出西瓜 (千克)之间的关系式;
(2)小明从批发市场共购进多少千克西瓜?
(3)小明这次卖瓜赚子多少钱?
7、如图中的折线ABC是甲地向乙地打长途电话所需要付的电话费y(元)与通话时间t(分钟)之间的关系的图象.
(1)通话1分钟,要付电话费多少元?通话5分钟要付多少电话费?
(2)通话多少分钟内,所支付的电话费不变?
(3)如果通话3分钟以上,电话费y(元)与时间t(分钟)的关系式是 ,那么通话4分钟的电话费是多少元?
8、如图是某水库的蓄水量v(万米3)与干旱持续时间t(天)之间的关系图,回答下列问题:
(1)该水库原蓄水量为多少万米3?持干旱持续时间10天后,水库蓄水量为多少万米3?
(2)若水库的蓄水量小于400万米3时,将发生严重干旱警报,请问:持续干旱多少天后,将发生严重干旱警报?
(3)按此规律,持续干旱多少天时,水库将干涸?
9、(成都市)某移动通信公司开设了两种通信业务,“全球通”:使用时首先缴50元月租费,然后每通话1分钟,自付话费0.4元;“动感地带”:不缴月租费,每通话1分钟,付话费0.6元(本题的通话均指市内通话),若一个月通话x分钟,两种方式的费用分别为 元和 元.
(1)写出 、 与x之间的关系式;
(2)一个月内通话多少分钟,两种移动通讯费用相同?
(3)某人估计一个月内通话300分钟,应选择哪种移动通信合算些?