高考在线
高考在线 >中考

长沙市数学中考考点

2023-08-17 23:32:05 高考在线

长沙市数学中考考点

一.知识框架

二.知识概念

一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。

(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.

(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.

介绍配方法时,首先通过实际问题引出形如的方程。这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如的方程。然后举例说明一元二次方程可以化为形如的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

(3)一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:

解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.

数学中考考点总结

单项式与多项式

仅含有一些数和字母的乘法(包括乘方)运算的式子叫做单项式单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式(或字母因数)的数字系数,简称系数。

当一个单项式的系数是1或-1时,“1”通常省略不写。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

1、多项式

有有限个单项式的代数和组成的式子,叫做多项式。

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

单项式可以看作是多项式的特例

把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

2、多项式的值

任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

3、多项式的恒等

对于两个一元多项式f(x)、g(x)来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即f(a)=g(a),那么,这两个多项式就称为是恒等的记为f(x)==g(x),或简记为f(x)=g(x)。

性质1如果f(x)==g(x),那么,对于任一个数值a,都有f(a)=g(a)。

性质2如果f(x)==g(x),那么,这两个多项式的个同类项系数就一定对应相等。

4、一元多项式的根

一般地,能够使多项式f(x)的值等于0的未知数x的值,叫做多项式f(x)的根。

多项式的加、减法,乘法

1、多项式的加、减法

2、多项式的乘法

单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

3、多项式的乘法

多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

常用乘法公式

公式I平方差公式

(a+b)(a-b)=a^2-b^2

两个数的和与这两个数的差的积等于这两个数的平方差。

数学中考考点

直角三角形的判定方法:

判定1:定义,有一个角为90°的三角形是直角三角形。

判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。

判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么

判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)