高考在线
高考在线 >中考

福建中考数学考点归纳

2023-08-15 12:11:34 高考在线

福建中考数学考点归纳

1、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径

圆上各点到定点的距离都等于定长

到定点的距离等于定长的点都在同个平面上

因此,圆心为O、半径为r的圆可以看成所有到定点O距离等于定长r的点的集合

2、弧、弦、圆心角

弧:圆上任意两点间的部分叫做圆弧,简称弧。

圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆

弦:连接圆上任意两点的线段,叫做弦。经过圆心的弦,叫做直径

圆心角:顶点在圆心的角

圆是轴对称图形,任何一条直径所在的直线都是圆的对称轴

圆是中心对称图形,圆心O是它的对称中心

3、圆周角

顶点在圆上,并且两边都圆相交的角叫做圆周角。

4、圆周角定理

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半

推论:

半圆(或直径)所对的圆周角是直角,90度的圆周角所对应的弦是直径。

推论:

圆的内接四边形对角之和为180度

注意:对内接四边形的判定,必须4个顶点都在圆上。

5、点和圆的位置关系

点P在圆内d点P在圆上d=r

点P在圆外d>r

6、不在同一直线上的三个点确定一个圆

注意:不在同一直线这一要点

经过三角形的三个顶点可以做一个圆,这个圆叫作三角形的外接圆

外接圆的圆心是三角形三条边垂直平分线的交点,叫作这个三角形的外心

特殊的:直角△的外心在斜边上的中点。

一般求△外心的题往往是直角△或者等腰△,等腰△请结合垂径定理和勾股定理

7、直线和圆的位置关系

直线l和圆O相交(有两个公共点)d直线l和圆O相切(有一个公共点)d=r直线为切线,点为切点

直线l和圆O相离(没有公共点)d>r

8、切线的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线

在灵活运用该定理的同时,切莫忘记第三大点中的判定方法!(往往在出现角平分线、等腰三角形的场所,我们需要用到此方法去判定相切)

9、切线的性质定理

圆的切线垂直于过切点的半径

这两个定理的运用:前者是不清楚直线与圆的关系,进行判断。后者是已知直线与圆相切,进行性质分析。

10、切线长定理

经过圆外一点作过圆的切线,这点和切点之间的线段的长,叫作这点到圆的切线长

从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。这个定理叫作切线长定理。

中考数学考点分析

1、三角形的的内心

与三角形各边都相切的圆叫做三角形的内切圆。

内切圆的圆心是三角形三条角一部分线的交点,叫作三角形的内心。

注意内心外心的区别和应用。三角形的内心必然在△内部,外心则有可能在外部

内切圆半径的计算方法

三角形面积=内切圆半径_三角形周长/2

2、点和圆的位置关系

点P在圆内d点P在圆上d=r

点P在圆外d>r

3、三个相等:

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

在同圆或等圆中,如果两两弧相等,那么它们所对应的圆心角相等,所对的弦相等。

在同圆或等圆中,如果两条弦相等,那么它们所对应的圆心角相等,所对的弧相等。

4、直线和圆的位置关系

直线与圆相交(两个交点)d直线与圆相切(一个交点)d=r

直线与圆相离(没有交点)d>r

5、圆和圆的位置关系

圆与圆相交(两个交点)R-r圆与圆相切(一个交点)d=R-r(内切)d=R+r(外切)

圆与圆外离(没有交点)d>R+r

圆与圆内含(没有交点)d还一种最特殊情况,同心圆d=0

注意:相切一定要看清楚,是内切还是外切,还是两种都可能

学生可尝试画一个数轴区域示意图

6、对圆而言,请注重其对称性

相切的两个圆,不论内切外切,显然,切点和两个圆心应该在同一直线上。

7、扇形的弧长及面积

扇形:由两条半径及两条半径组成的角对应的弧形成的图形

扇形弧长:

注意区别弧长与周长

扇形面积

弧长及面积的关系

8、正多边形

正多边形:各边长相等,各顶角相等的多边形

我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心

外接圆的半径叫做正多边形的半径

正多边形的每一边所对的圆心角叫做正多边形的中心角

中心到正多边形的一边的距离叫做正多边形的边心距

正多边形的计算:遵循每条边所对应的圆心角的度数为360/n即可,利用垂径定理,等腰三角形进行解答。

9、圆锥的侧面积和全面积

圆锥是由一个底面和一个侧面围成的

我们把连接圆锥顶点和底边圆周上任意一点的线段叫做圆锥的母线

圆锥的侧面展开图是一个扇形。设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为,因此圆锥的侧面积为,圆锥的全面积为

圆锥侧面展开扇形的中心角可通过此扇形的弧长及半径,进行计算

10、把一个图形绕某一点O转动一个角度的图形变换叫做旋转。

点O叫做旋转中心,转动的角叫做旋转角。

如果图形上的P经过旋转变为点P’,那么这两个点叫做这个旋转的对应点

把一个图形绕着某一个点旋转180度

如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形。

中考数学考点归纳

1、“三线八角”:两条直线被第三条直线所截而成的八个角。其中,

同位角:位置相同,及同旁和同规;

内错角:内部,两旁;

同旁内角:内部,同旁。

2、平行线的判定方法:

1)同位角相等,两直线平行

2)内错角相等,两直线平行

3)同旁内角互补,两直线平行

3、平行线的性质:

1)两直线平行,同位角相等

2)两直线平行,内错角相等

3)两直线平行,同旁内角互补

4、三角形的分类:

1)按角分:锐角三角形、直角三角形、钝角三角形

2)按边分:等腰三角形、不等边三角形

5、三角形的性质:

1)三角形中任意两边之和大于第三边,任意两边只差小于第三边

2)三角形内角和为180o

3)三角形外角等于与之不相邻的两个内角的和

6、三角形中的主要线段:

1)三角形的中位线:连接三角形两边中点的线段

中位线性质:中位线平行于第三边,且等于第三边的一半。

2)三角形的中线、高线、角平分线都是线段

7、等腰三角形的性质和判定:

1)等腰三角形的两个底角相等

2)等腰三角形底边上的高、中线、顶角的角平分线互相重合,简称三线合一

3)有两个角相等的三角形是等腰三角形

8、等边三角形的性质和判定:

1)等边三角形每个角都等于60o,同样具有三线合一的性质

2)三个角相等的三角形是等边三角形;三边相等的三角形是等边三角形;一个角等于60o的等腰三角形是等边三角形

9、直角三角形的性质和判定:

1)直角三角形两个锐角和为90o(互余)

2)直角三角形中30o所对的直角边等于斜边的一半

3)直角三角形中,斜边的中线等于斜边的一半

4)勾股定理:直角三角形中,两直角边的平方和等于斜边的平方

5)勾股定理的逆定理:若一个三角形中,有两边的平方和等于第三边的平方,则这个三角形是直角三角形

10、全等三角形:

1)对应边相等,对应角相等的三角形叫全等三角形

2)全等三角形的判定方法:SSS、SAS、ASA、AAS、HL

【观察这五种方法发现,要证三角形全等,至少要有一组相等的边,因此在应用是要养成先找边的习惯】

3)全等三角形的性质:全等三角形的对应边、对应角、面积、周长、对应高、对应中线、对应角平分线都相等