-
相关文章
山西中考数学考点分析
2023-08-04 05:01:22佛山市中考数学考点
2023-08-14 19:29:48中考考点之数学函数有哪些
2023-08-05 14:51:40中考数学的基本定理有哪些
2023-08-01 13:28:22达州中考录取率多少,各高中录戎数线统计
2023-08-05 23:03:19广安中考录取率多少,各高中录戎数线统计
2023-08-07 10:01:37宜宾中考录取率多少,各高中录戎数线统计
2023-08-18 05:38:08幸福的味道满分作文高三800字五篇
2023-08-16 12:20:26小学数学课堂教学总结
2023-08-18 09:00:55简短的个人辞职申请书范文7篇
2023-08-12 19:08:02简易的个人求职简历五篇
2023-08-08 21:06:26
中考数学复习攻略整理
2019年中考数学知识点复习口诀
1有理数的加法运算:
同号相加一边倒;异号相加“大”减“小”,
符号跟着大的跑;绝对值相等“零”正好.
2合并同类项:
合并同类项,法则不能忘,只求系数和,字母、指数不变样.
3去、添括号法则:
去括号、添括号,关键看符号,
括号前面是正号,去、添括号不变号,
括号前面是负号,去、添括号都变号.
4一元一次方程:
已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒.
5平方差公式:
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆.
6完全平方公式:
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;
首±尾括号带平方,尾项符号随中央.
7因式分解:
一提(公因式)二套(公式)三分组,细看几项不离谱,
两项只用平方差,三项十字相乘法,阵法熟练不马虎,
四项仔细看清楚,若有三个平方数(项),
就用一三来分组,否则二二去分组,
五项、六项更多项,二三、三三试分组,
以上若都行不通,拆项、添项看清楚.
8单项式运算:
加、减、乘、除、乘(开)方,三级运算分得清,
系数进行同级(运)算,指数运算降级(进)行.
9一元一次不等式解题的一般步骤:
去分母、去括号,移项时候要变号,同类项合并好,再把系数来除掉,
两边除(以)负数时,不等号改向别忘了.
10一元一次不等式组的解集:
大大取较大,小小取较小,小大、大小取中间,大小、小大无处找.
一元二次不等式、一元一次绝对值不等式的解集:
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间.
11分式混合运算法则:
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);
乘法进行化简,因式分解在先,分子分母相约,然后再行运算;
加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简.
12分式方程的解法步骤:
同乘最简公分母,化成整式写清楚,
求得解后须验根,原(根)留、增(根)舍,别含糊.
13最简根式的条件:
最简根式三条件,号内不把分母含,
幂指数(根指数)要互质、幂指比根指小一点.
14特殊点的坐标特征:
坐标平面点(x,y),横在前来纵在后;
(+,+),(-,+),(-,-)和(+,-),四个象限分前后;
x轴上y为0,x为0在y轴.
象限角的平分线:
象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵却相反.
平行某轴的直线:
平行某轴的直线,点的坐标有讲究,
直线平行x轴,纵坐标相等横不同;
直线平行于y轴,点的横坐标仍照旧.
15对称点的坐标:
对称点坐标要记牢,相反数位置莫混淆,
x轴对称y相反,y轴对称x相反;
原点对称记,横纵坐标全变号.
16自变量的取值范围:
分式分母不为零,偶次根下负不行;
零次幂底数不为零,整式、奇次根全能行.
17函数图象的移动规律:
若把一次函数的解析式写成y=k(x+0)+b,
二次函数的解析式写成y=a(x+h)2+k的形式,
则可用下面的口诀
“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”.
18一次函数的图象与性质的口诀:
一次函数是直线,图象经过三象限;
正比例函数更简单,经过原点一直线;
两个系数k与b,作用之大莫小看,k是斜率定夹角,b与y轴来相见,
k为正来右上斜,x增减y增减;
k为负来左下展,变化规律正相反;
k的绝对值越大,线离横轴就越远.
19二次函数的图象与性质的口诀:
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象现;
开口、大小由a断,c与y轴来相见;
b的符号较特别,符号与a相关联;
顶点位置先找见,y轴作为参考线;
左同右异中为0,牢记心中莫混乱;
顶点坐标最重要,一般式配方它就现;
横标即为对称轴,纵标函数最值见.
若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换.
20反比例函数的图象与性质的口诀:
反比例函数有特点,双曲线相背离得远;
k为正,图在一、三(象)限,k为负,图在二、四(象)限;
图在一、三函数减,两个分支分别减.
图在二、四正相反,两个分支分别增;
线越长越近轴,永远与轴不沾边.
21特殊三角函数值记忆:
首先记住30度、45度、60度的正弦值、余弦值的分母都是2,
正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可.
三角函数的增减性:正增余减
22平行四边形的判定:
要证平行四边形,两个条件才能行,
一证对边都相等,或证对边都平行,
一组对边也可以,必须相等且平行.
对角线,是个宝,互相平分“跑不了”,
对角相等也有用,“两组对角”才能成.
23梯形问题的辅助线:
移动梯形对角线,两腰之和成一线;
平行移动一条腰,两腰同在“△”现;
延长两腰交一点,“△”中有平行线;
作出梯形两高线,矩形显示在眼前;
已知腰上一中线,莫忘作出中位线.
24添加辅助线歌:
辅助线,怎么添?找出规律是关键.
题中若有角(平)分线,可向两边作垂线;
线段垂直平分线,引向两端把线连;
三角形边两中点,连接则成中位线;
三角形中有中线,延长中线翻一番.
25圆的证明歌:
圆的证明不算难,常把半径直径连;
有弦可作弦心距,它定垂直平分弦;
直径是圆弦,直圆周角立上边,
它若垂直平分弦,垂径、射影响耳边;
还有与圆有关角,勿忘相互有关联,
圆周、圆心、弦切角,细找关系把线连.
同弧圆周角相等,证题用它最多见,
圆中若有弦切角,夹弧找到就好办;
圆有内接四边形,对角互补记心间,
外角等于内对角,四边形定内接圆;
直角相对或共弦,试试加个辅助圆;
若是证题打转转,四点共圆可解难;
要想证明圆切线,垂直半径过外端,
直线与圆有共点,证垂直来半径连,
直线与圆未给点,需证半径作垂线;
四边形有内切圆,对边和等是条件;
如果遇到圆与圆,弄清位置很关键,
两圆相切作公切,两圆相交连公弦.
中考数学复习攻略
(一)狠抓“双基”训练。
“双基”即基础知识与基本技能。基础知识是指数学概念、定理、法则、公式以及各种知识之间的内在联系;基本技能是一种较稳定的心理因素,是一种已经程式化了的动作,初中数学基本技能包括运算技能、画图技能、运用数字语言的技能、推理论证的技能等。只有扎实地掌握“双基”,才能灵活应用、深入探索,不断创新。
(二)注意前后联系。
初三数学是以前两年的学习内容为基础的,可以用来复习、巩固相关的内容,同时新知识的学习常常由旧知识引入或要用到前面所学过的内容,甚至是已有知识的综合、提高与延续。因此在学习中,要注意前后知识的联系,以便达到巩固与提高的目的。
(三)重视归纳梳理。
初三数学各章内容丰富、综合性强,学习过程中要及时进行归纳梳理,以便于对知识深入理解,系统掌握,灵活运用。要学会从横向、纵向两方面归纳梳理知识。纵向主要是按照知识的来龙去脉进行总结归纳,如学完函数,可按正比例函数,一次函数、二次函数、反比例函数来归纳知识。横向是平行的、相关的知识的整合,通过对比指出其区别与联系,如学完二次函数之后,可把二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)之间的联系进行归纳,这样既可以巩固新、旧知识,更可以提高综合运用知识的能力,收到事半功倍的效果。
(四)掌握基本模型,找出本质属性。
中学的“数学模型”常常是指反映数学知识规律的结论和基本几何图形。初中代数中,运算法则、性质、公式、方程、函数解析式等均是代数的模型;平面几何中,各类知识中的基本图形均是几何模型。通过对这些基本模型的研究,能够更好地掌握知识的本质属性,沟通知识间的联系。重要的公式、定理是知识系统的主干,我们不仅要知其内容,还应该搞清其来龙去脉,理解其本质。如一元二次方程的求根公式的推导,不仅体现方法,而且由此公式可得出两根与系数的关系,还可类似地推出二次函数的顶点坐标公式,所以一定要掌握推导过程。再如,相交弦定理、切割线定理、割线定理、切线长定理尽管形式上不尽相同,但是它们之间都有着某种内在联系。
联系1:由两条弦的交点运动及割线的运动将四条定理结论统一到PA·PB=PC·PD上来;
联系2:结论形式上的统一:PA·PB=22OPR-(O为圆心,P为两弦交点)。
所以也把相交弦定理、切割线定理、割线定理统称为“圆幂定理”,这也是几何的一个基本模型。
(五)掌握数学思想方法。
数学思想方法是解决数学问题的灵魂,是形成数学能力、数学意识的桥梁,是灵活运用数学知识、技能的关键。在解数学综合题时,尤其需要用数学思想方法来统帅,去探求解题思路,优化解题过程,验证所得结论。在初三这一年的数学学习中,常用的数学方法有:消元法、换元法、配方法、待定系数法、反证法、作图法等;常用的数学思想有:转化思想,函数与方程思想、数形结合思想、分类讨论思想。转化思想就是把待解决或难解决的问题,通过某种转化手段,使它转化成已经解决或比较容易解决的问题,从而求得原问题的解答。转化思想是一种最基本的数学思想,如在运用换元法解方程时,就是通过“换元”这个手段,把分式方程转化为整式方程,把高次方程转化为低次方程,总之把结构复杂的方程化为结构简单的方程。学习和掌握转化思想有利于我们从更高的层次去揭示、把握数学知识、方法之间的内在联系,树立辩证的观点,提高分析问题和解决问题的能力。函数思想就是用运动变化的观点,分析和研究具体问题中的数量关系,用函数的形式,把这种数量关系表示出来并加以研究,从而使问题得到解决。方程思想,就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知量与未知量的数量关系,转化为方程或方程组,然后利用方程的理论和方法,使问题得到解决。方程思想在解题中有着广泛的应用,解题时要善于从题目中挖掘等量关系,能够根据题目的特点选择恰当的未知数,正确列出方程或方程组。数形结合思想就是把问题中的数量关系和几何图形结合起来,使“数”与“形”相互转化,达到抽象思维与形象思维的结合,从而使问题得以化难为易。具体来说,就是把数量关系的问题,转化为图形问题,利用图形的性质得出结论,再回到数量关系上对问题做出回答;反过来,把图形问题转化成一个数量关系问题,经过计算或推论得出结论再回到图形上对问题做出回答,这是解决数学问题常用的一种方法。分类讨论思想是根据所研究对象的差异,将其划分成不同的种类,分别加以研究,从而分解矛盾,化整为零,化一般为特殊,变抽象为具体,然后再一一加以解决。分类依赖于标准的确定,不同的标准会有不同的分类方式。总之,数学思想方法是分析解决数学问题的灵魂,也是训练提高数学能力的关键,更是由知识型学习转向能力型学习的标志。
(六)提高数学能力。
数学能力的提高,是我们数学学习的主要目的,能力培养是目前中学数学教育中倍受关注的问题,因此能力评价也就成为数学考查中的热点。
(1)熟练准确的计算能力
数式运算、方程的解法、几何量的计算,这些都是初中数学重点解决的问题,应该做到准确迅速。
(2)严密有序的分析、推理能力
推理、论证体现的是逻辑思维能力,几何问题较多。提高这一能力,应从以下几个方面着手:
(ⅰ)认清问题中的条件、结论,特别要注意隐含条件;
(ⅱ)能正确地画出图形;
(ⅲ)论证要做到步步有依据;
(ⅳ)学会执果索因的分析方法。
(3)直观形象的数形结合能力
“数”和“形”是数学中两个最基本的概念,研究数学问题时,一定要学会利用数形结合的数学思想方法。
(4)快速高效的阅读能力
初三数学中可阅读的内容很多,平时学习中要尽可能多地去读书,通过课内、外的阅读,既可以提高兴趣、帮助理解,同时也培养了阅读能力。如果不注意提高阅读能力,那么应对阅读量较大的考题或热点阅读理解型题目就会有些力不从心了。
(5)观察、发现、创新的探索能力
数学教育和素质教育所提倡的“过程教学”中的“过程”指的是数学概念、公式、定理、法则的提出过程、知识的形成发展过程、解题思路的探索过程、解题方法和规律的概括过程。只有在平时的学习中注意了这些“过程”才能提高自己独立解决问题、自主获取知识,不断探索创新的能力。
(七)注重实际应用。
利用所学数学知识去探求新知识领域,去研究解决实际问题是数学学习的归宿。加强数学与实际的联系是素质教育的要求。解应用问题的关键是转化,即将实际应用问题转化成数学模型,再利用数学知识去解决问题,从而不断提高自己用数学的意识解决实际问题的能力。最后要强调的是:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。我们应该在这样的学习过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
中考数学期末复习方法
一、期末数学复习建议
1.不要钻偏题、怪题、过难题的牛角尖,根据自己平时做套卷时的感受,多练习以下几个类型的题目
(1)初看没有思路,但分析后能顺利做出的。通过对这类问题的练习,能够使我们对题目的考点和重点更熟悉,提高建立思路的速度和切入点的准确度,让我们能在考试中留出更多时间来处理后面难度高、阅读量大的综合题。
(2)自己经常出错的中档题。中档题在中考中每年的考查内容都差不多,题目位置也相对固定,属于解决了一个板块就能得到相应版块分数的类型。在中档题的某个题型经常出错说明对这部分内容的基本概念和常用方法理解不到位。通过练习,多总结这类题目的解题思路和技巧,把不稳定的得分变成到手的分数。中档题难度一般不会太高,所以对于自己薄弱的中档题进行突击练习一般都会有很好的效果。
(3)基础相对薄弱的同学也应该做一些常考的题目类型。比如圆的切线的判定以及与圆相关的线段计算、一次函数和反比例函数的综合、二元一次方程整数根问题等,通过练习,进一步提高我们解决这些问题的熟练度。
2.学会看错题的正确方式
大部分学生都有错题本,在复习时看错题本,巩固自己的错误是不错的复习方式,但在看错题时一定要杜绝连题目带答案一起顺着看下来的方式。尽量能够将答案挡住,自己再尝试做一遍,如果做的过程中遇到问题再去看答案,并做好标注,过两天再试做一遍,争取能在期末考试前将之前的错题整体过两到三遍、加深印象。
3.认真研究每道题目的考点
做题时,我们心中要对相应题目所对应的考点有所了解,比如填空题中如果出现几何问题,主要是对图形基本性质和面积的考察,而很少考到全等三角形的证明(尺规作图写依据除外),所以我们在填空题中看到几何问题,就不用从全等方面找突破口,而是更多地注重图形的基本性质。比如平行四边形对角线互相平分、等腰三角形三线合一等。
4.尽量避免只看不算
很多同学在复习时不喜欢动笔,觉得自己看明白了就行,但俗话说“眼过千遍不如手过一遍”,不去实际操作只是看一遍题目,对题目解法和思路的印象其实是很低的。而且在计算过程中还能锻炼我们的计算能力,提高解题速度和准确性。许多同学在写证明题时很不熟练,逻辑不顺畅,也是由于平时对书写的不重视,应该趁着期末考试前的时间,多练练书写。
5.熟记各种解题公式和技巧
数学解题中往往会用到很多公式和结论,比如两点间距离公式、中点坐标公式、二元一次方程的求根公式、二次函数顶点坐标公式、扇形面积公式等,对这些公式还不熟练的同学,一定要在考试之前认真复习巩固这些公式,做到熟练掌握。另外,对于直线的平移、对称的规律、二次函数图像的平移和翻折等的做法也要烂熟于心。
6.更加讲究技巧性、解题方法要灵活
期末考试中除了选择、填空之外、还有一些直接写出结论的题目,这些题目我们在解决时都可以利用图像或一些特殊的值和位置、得到正确的结果,而不用按部就班的证明和运算。在做的时候要胆大加心细。
二考试注意事项
1.数学考试一般在上午进行,前一天一定要保证休息,不要熬夜。
2.调整好考试状态,不要过分紧张,考试时遇到不会的问题或读不懂的题要放慢速度再细读一遍,若仍不会要适当学会跳过,先做后面的。
3.最后的时间尽量用来检查、后面的难题难度如果实在太大,我们应该认真检查前面的题目中有没有粗心导致的错误,确保该拿的分都拿到。
4.函数题养成画图的好习惯,画图要尽量做到标准、相应的交点位置一定要画准确。与此同时,做题时多去结合图像。
5.遇到仅剩的几道难题没有思路时,通读试卷,看看哪些考点还没有涉及到,比如你的几何综合大题不会做,看了全卷之后发现没有考到相似三角形,那么很有可能这道综合题就需要利用相似三角形来解决。
6.画图用铅笔、连线用直尺、保持卷面整洁。