高考在线
高考在线 >中考

佛山中考数学考点梳理

2023-08-01 14:59:12 高考在线

佛山中考数学考点梳理

一、代数式

1.概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。单独的一个数或字母也是代数式。

2.代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。

二、整式

单项式和多项式统称为整式。

1.单项式:1)数与字母的乘积这样的代数式叫做单项式。单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。

2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。

3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。

2.多项式:1)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。

2)多项式的次数:多项式中,次数的项的次数,就是这个多项式的次数。

3.多项式的排列:

1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。

2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。

由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。

三、整式的运算

1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。

2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

3.整式的加减:有括号的先算括号里面的,然后再合并同类项。

4.幂的运算:

5.整式的乘法:

1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的字母连同它的指数作为积的因式。

2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。

3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。

6.整式的除法

1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。

四、因式分解:把一个多项式化成几个整式的积的形式

1)提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。

2)公式法:A.平方差公式;B.完全平方公式

中考数学考点梳理

一、考点分析考点一、点和圆的位置关系

设⊙O的半径是r,点P到圆心O的距离为d,则有:

d

d=r点P在⊙O上;

d>r点P在⊙O外。

考点二、过三点的圆

1、过三点的圆

不在同一直线上的三个点确定一个圆。

2、三角形的外接圆

经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心

三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)

圆内接四边形对角互补。

考点三、直线与圆的位置关系

直线和圆有三种位置关系,具体如下:

(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;

(2)相切:直线和圆有公共点时,叫做直线和圆相切,这时直线叫做圆的切线,

(3)相离:直线和圆没有公共点时,叫做直线和圆相离。

如果⊙O的半径为r,圆心O到直线l的距离为d,那么:

直线l与⊙O相交d

直线l与⊙O相切d=r;

直线l与⊙O相离d>r;

考点四、圆内接四边形

圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。

1、切线的判定定理:过半径外端且垂直于半径的直线是切线;

两个条件:过半径外端且垂直半径,二者缺一不可

2、性质定理:切线垂直于过切点的半径(如上图)

推论1:过圆心垂直于切线的直线_切点。

推论2:过切点垂直于切线的直线_圆心。

以上三个定理及推论也称二推一定理:

即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。

考点五、切线长定理

切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心连线平分两条切线的夹角。

考点六、三角形的内切圆和外接圆

1、三角形的内切圆

与三角形的各边都相切的圆叫做三角形的内切圆。

2、三角形的内心

三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。

考点七、弧长和扇形面积

中考数学考点

一、定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:

1.当时间t一定,距离s是速度v的一次函数。s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。

六、常用公式:

1.求函数图像的k值:(y1-y2)/(x1-x2)

2.求与x轴平行线段的中点:|x1-x2|/2

3.求与y轴平行线段的中点:|y1-y2|/2

4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)