-
相关文章
四川省绵阳市中考数学考点解析
2023-08-08 10:20:08济南中考数学考点
2023-08-05 01:00:16山西省中考数学考点总结
2023-08-11 19:50:26初中数学之多项式运算归纳
2023-08-09 09:50:11达州中考录取率多少,各高中录戎数线统计
2023-08-05 23:03:19广安中考录取率多少,各高中录戎数线统计
2023-08-07 10:01:37宜宾中考录取率多少,各高中录戎数线统计
2023-08-18 05:38:08等可能事件的概率北师大版数学初一下册教案
2023-08-02 13:37:14学习主题征文最新五篇
2023-08-09 08:47:32四川省绵阳市中考数学考点解析
2023-08-08 10:20:08二次函数人教版数学九年级上册教案
2023-08-16 14:31:03
中考数学平面向量三篇
初中数学知识点:平面向量
向量的定义:
既有方向又有大小的量叫做向量。
向量的表示:
具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB→。
1、向量的定义:既有方向又有大小的量叫做向量。
2、向量的表示:具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记。
3、向量加法运算
向量的分类和构成因素:
具有方向的线段叫做有向线段,以A为起点,B为终点的有向线段记作AB。(AB是印刷体,也就是粗体字母,书写体是上面加个→)
有向线段AB的长度叫做向量的模,记作|AB|。
有向线段包含3个因素:起点、方向、长度。
①相等向量:长度相等且方向相同的向量叫做相等向量。
②平行向量、共线向量:两个方向相同或相反的非零向量叫做平行向量或共线向量,在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量共线就是指两条是平行向量)
③零向量:长度等于0的向量叫做零向量,记作0。(注意粗体格式,实数“0”和向量“0”是有区别的,书写时要在实数“0”上加箭头,以免混淆)
零向量的方向是任意的;且零向量与任何向量都平行且垂直。
向量a、b平行,记作a//b,零向量与任意向量平行,即0//a。
④单位向量:模等于1个单位长度的向量叫做单位向量。
中考数学知识点:向量的有关概念和公式
向量的有关概念和公式
如果数轴上的任意一点沿着轴的正向或负向移动到另一个点,则说点在轴上作了一次位移.位移是一个既有大小又有方向的量,通常叫做位移向量,简称向量,记作.如果点移动的方向与数轴的正方向相同,则向量为正,否则为负.线段的长叫做向量的长度,记作.向量的长度连同表示其方向的正负号叫做向量的坐标(或数量),用表示.这里同学们要分清,,三个符号的含义.
对于数轴上任意三点,都有成立.该等式左边表示在数轴上点向点作一次位移,等式右边表示点先向点作一次位移,再由点向点作一次位移,它们的最终结果是相同的.
向量的坐标公式(或数量公式),它表示向量的数量等于终点的坐标减去起点的坐标,这个公式非常重要.
有相等坐标的两个向量相等,看做同一个向量;反之,两个相等向量坐标必相等。
注意:①相等的所有向量看做一个整体,作为同一向量,都等于以原点为起点,坐标与这所有向量相等的那个向量.②向量与数轴上的实数(或点)是一一对应的,零向量即原点.
中考数学辅导:平面向量
特殊规律:
1.三角形ABC内一点O,向量OA·向量OB=向量OB·向量OC=向量OC·向量OA,则点O是三角形的垂心。
2.若O是三角形ABC的外心,点M满足向量OA+向量OB+向量OC=向量OM,则M是三角形ABC的垂心。
3若O和三角形ABC共面,且满足向量OA+向量OB+向量OC=零向量,则O是三角形ABC的重心。
三点共线 三点A,B,C共线推出OA=μOB+aOC(μ+a=1)
向量加法运算:
作AB=a,且AD=BC,再作平行于AD的BC=b,连接DC,因为AD∥BC,且AD=BC,所以四边形ABCD为平行四边形,AC叫做a与b的和,表示为:AC=a+b.这种方法叫做向量加法的平行四边形法则。(共起点,对角连)。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
||a|-|b||≤|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
数乘:
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa=0。
设λ、μ是实数,那么:(1)(λμ)a= λ(μa)(2)(λ + μ)a= λa+ μa(3)λ(a±b) = λa± λb(4)(-λ)a=-(λa) = λ(-a)。
向量的加法运算、减法运算、数乘运算统称线性运算。
坐标:
已知a=(x1,y1),b=(x2,y2),则
a+b=(x1+x2,y1+y2)
a-b=(x1-x2,y1-y2)
这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
由此可以得到:
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标。
根据上面的结论又可得
若a=(x,y),则λa=(λx,λy)
这就是说,实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。