-
相关文章
中考数学知识点之二次根式是什么
2023-08-12 17:47:36初中数学考点概要
2023-08-09 19:16:28九年级数学考点梳理
2023-08-13 08:50:42岳阳数学中考考点归纳
2023-08-08 16:59:58达州中考录取率多少,各高中录戎数线统计
2023-08-05 23:03:19广安中考录取率多少,各高中录戎数线统计
2023-08-07 10:01:37宜宾中考录取率多少,各高中录戎数线统计
2023-08-18 05:38:08初中数学一年级教案人教版文案
2023-08-10 03:03:42观长津湖有感
2023-08-09 20:45:18中考数学知识点之二次根式是什么
2023-08-12 17:47:36初中人教版九年级下册语文教案模板
2023-08-05 14:57:33
初中数学平行四边形三篇
初中数学平行四边形的性质知识点总结
知识点总结
1.定义:两组对边分别平行的四边形叫平行四边形
2.平行四边形的性质
(1)平行四边形的对边平行且相等;
(2)平行四边形的邻角互补,对角相等;
(3)平行四边形的对角线互相平分;
3.平行四边形的判定
平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:
第一类:与四边形的对边有关
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
第二类:与四边形的对角有关
(4)两组对角分别相等的四边形是平行四边形;
第三类:与四边形的对角线有关
(5)对角线互相平分的四边形是平行四边形
常见考法
(1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。
误区提醒
(1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。
初中数学特殊四边形
一、特殊的平行四边形
1.矩形:
(1)定义:有一个角是直角的平行四边形。
(2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。
(3)判定定理:
①有一个角是直角的平行四边形叫做矩形。②对角线相等的平行四边形是矩形。③有三个角是直角的四边形是矩形。
直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。
2.菱形:
(1)定义 :邻边相等的平行四边形。
(2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
(3)判定定理:
①一组邻边相等的平行四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③四条边相等的四边形是菱形。
3.正方形:
(1)定义:一个角是直角的菱形或邻边相等的矩形。
(2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。 正方形既是矩形,又是菱形。
(3)正方形判定定理:
①对角线互相垂直平分且相等的四边形是正方形;
②一组邻边相等,一个角为直角的平行四边形是正方形;
③对角线互相垂直的矩形是正方形;
④邻边相等的矩形是正方形
⑤有一个角是直角的菱形是正方形;
⑥对角线相等的菱形是正方形。
数学四边形知识点总结
(一)平行四边形的定义、性质及判定.
1.两组对边平行的四边形是平行四边形.
2.性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分.
3.判定:
(1)两组对边分别平行的四边形是平行四边形:
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形:
(5)对角线互相平分的四边形是平行四边形.
4·对称性:平行四边形是中心对称图形.
(二)矩形的定义、性质及判定.
1-定义:有一个角是直角的平行四边形叫做矩形.
2·性质:矩形的四个角都是直角,矩形的对角线相等
3.判定:
(1)有一个角是直角的平行四边形叫做矩形;
(2)有三个角是直角的四边形是矩形:
(3)两条对角线相等的平行四边形是矩形.
4·对称性:矩形是轴对称图形也是中心对称图形.
(三)菱形的定义、性质及判定.
1·定义:有一组邻边相等的平行四边形叫做菱形.
(1)菱形的四条边都相等;。
(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角
(3)菱形被两条对角线分成四个全等的直角三角形.
(4)菱形的面积等于两条对角线长的积的一半:
2.s菱=争6(n、6分别为对角线长).
3.判定:(1)有一组邻边相等的平行四边形叫做菱形
(2)四条边都相等的四边形是菱形;
(3)对角线互相垂直的平行四边形是菱形.
4.对称性:菱形是轴对称图形也是中心对称图形.
(四)正方形定义、性质及判定.
1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
2.性质:(1)正方形四个角都是直角,四条边都相等;
(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;
(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形;
(4)正方形的对角线与边的夹角是45。;
(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
3.判定:
(1)先判定一个四边形是矩形,再判定出有一组邻边相等;
(2)先判定一个四边形是菱形,再判定出有一个角是直角.
4.对称性:正方形是轴对称图形也是中心对称图形.
(五)梯形的定义、等腰梯形的性质及判定.
1.定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯
形.一腰垂直于底的梯形是直角梯形.
2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等.
3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形.
4.对称性:等腰梯形是轴对称图形.
(六)三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半.
(七)线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点..
(八)依次连接任意一个四边形各边中点所得的四边形叫中点四边形