-
相关文章
学生会思想工作总结范文
2023-08-09 08:42:50第一学期个人教学总结
2023-08-17 08:40:45个人工作总结集合十五篇)
2023-08-01 11:46:58新教师个人工作总结(通用六篇)
2023-08-14 08:58:02幼儿园保育工作总结六篇
2023-08-01 09:03:09最新学校安全教育日活动总结范文
2023-08-04 22:20:27幼儿园小班九月份工作心得
2023-08-07 10:26:22学生会思想工作总结范文
2023-08-09 08:42:50第一学期个人教学总结
2023-08-17 08:40:45个人工作总结集合十五篇)
2023-08-01 11:46:58新教师个人工作总结(通用六篇)
2023-08-14 08:58:02
九年级数学圆的知识点归纳总结
一点与圆的位置关系及其数量特征:
如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>dd>r。
二圆的对称性:
1与圆相关的概念:
④同心圆:圆心相同,半径不等的两个圆叫做同心圆。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦圆心角:顶点在圆心的角叫做圆心角。
⑧弦心距:从圆心到弦的距离叫做弦心距。
2圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
3垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的'两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:
①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
4定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
三圆周角和圆心角的关系:
1圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角。
2圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;
推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;
四确定圆的条件:
1理解确定一个圆必须的具备两个条件:
经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上。
2定理:不在同一直线上的三个点确定一个圆。
3三角形的外接圆、三角形的外心、圆的内接三角形的概念:
(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形。
(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心。
(3)三角形的外心的性质:三角形外心到三顶点的距离相等。