-
相关文章
最新疆初一数学教案
2023-08-12 01:11:11小学低年级数学教学设计方案五篇
2023-08-10 12:26:15学前教育数学教学设计方案
2023-08-15 13:51:37学生数学教学设计方案五篇推荐
2023-08-05 23:54:52小学数学上册二年级教案最新例文
2023-08-08 22:23:05新版北师大版二年级下册数学教案最新模板
2023-08-03 02:14:11最新一年级数学跷跷板教案模板
2023-08-05 17:37:25高二政治学习方法技巧
2023-08-01 07:07:22高中历史教案必修二范文
2023-08-03 09:10:40最新疆初一数学教案
2023-08-12 01:11:11高一政治学习方法重点介绍
2023-08-13 03:03:58
小学数学五年级下册知识点整理
人教版五年级数学下册知识点
1.轴对称:
如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。
对称轴:折痕所在的这条直线叫做对称轴。如下图所示:
小学数学知识点
2.轴对称图形的性质:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
3.轴对称的性质:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:
(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。
(4)对称轴是到线段两端距离相等的点的集合。
4.轴对称图形的作用:
(1)可以通过对称轴的一边从而画出另一边;
(2)可以通过画对称轴得出的两个图形全等。
5.因数:整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。
6.自然数的因数(举例):
6的因数有:1和6,2和3.
10的因数有:1和10,2和5.
15的因数有:1和15,3和5.
25的因数有:1和25,5.
7.因数的分类:除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。
我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
8.倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
9.完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
10.偶数:整数中,能够被2整除的数,叫做偶数。
11.奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数
小学五年级数学单元重点知识点
统计
重点知识
统计
1.众数的意义:在一组数据中,出现次数最多的数,是这组数据的众数。
2.众数的特征:能够反映一组数据的集中情况。
3.复式折线统计图:在计量过程中存在两组数据,而又需要在一个统计图中表示这两组数据时,就要用两种不同形式的折线来表示不同数量变化情况的折线统计图。
4. 复式折线统计图的特点:能表示两组数据数量的多少,数量的增减变化情况,还能比较两组数据的变化趋势。
5.复式折线统计图的制作:(1)根据两组数据量多少和图纸大小,画出两条相互垂直的射线;(2)在水平射线上确定好各点的距离,分配各点的位置;(3)在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示的数量;(4)用不同的图例表示两组不同的数据;(5)按照数据大小描出各点,再用线段顺次连接;(6)标出题目,注明单位、日期。
数学广角
重点知识 找次品的方法:把待测物体分成3份,要分得尽量平均,不能够平均分的,也应该使多的一份与少的一份只相差1.
人教版五年级数学下册简易方程知识点
1、方程的意义
含有未知数的等式,叫做方程。
2、方程和等式的关系
3、方程的解和解方程的区别
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤
(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
5、数量关系式
加数=和-另一个加数减数=被减数–差被减数=差+减数
因数=积另一个因数除数=被除数商被除数=商除数
例4用含有字母的式子表示下面的数量关系
(1)的7倍;(2)的5倍加上6;(3)5减的差除以3;
(4)200减5个;(5)比7个多2的数。
例9要修一段公路,平均每天修米,修了6天,还剩下米。
(1)用含有字母的式子表示这段公路有多少米;
(2)根据这个式子,分别求等于50,等于200时,公路长多少米
例11某个数与9的和的12倍等于156,求这个数是多少。
例12王晰买了2支钢笔和5支圆珠笔,共付17元。一支钢笔的价格是一支圆珠笔的40倍,求每支钢笔多少钱,每支圆珠笔多少钱?