-
相关文章
初中数学关于圆的知识点有哪些
2023-08-11 14:48:28九年级数学圆的考点有哪些
2023-08-11 02:00:24数学外接圆和内切圆考点有哪些
2023-08-09 01:42:38数学有理数相关习题三篇
2023-08-01 06:16:40达州中考录取率多少,各高中录戎数线统计
2023-08-05 23:03:19广安中考录取率多少,各高中录戎数线统计
2023-08-07 10:01:37宜宾中考录取率多少,各高中录戎数线统计
2023-08-18 05:38:08心愿作文500字六年级通用版10篇
2023-08-10 12:04:47北京版二年级数学下册教案模板
2023-08-04 05:17:17二年级数学下册教案游览北京文案
2023-08-15 05:00:32初中数学关于圆的知识点有哪些
2023-08-11 14:48:28
初中数学趣题巧解怎么做
趣题巧解 握手
A组:
1.4名同学,如果每两个人都握一次手,一共握手多少次?
2.5名同学约定在星期天每两个同学要通一次电话,共要打多少次电话?
3.学校里高年级有6个班,每两个班相互比赛篮球一次,这样要组织多少场次?
4.10个人乒乓球循环赛,即每两人都打一场来定胜负,共打多少场?
5.(1)百人参加乒乓球赛,比赛采用单淘汰制,即败者不能参加下轮比赛,胜者参加下轮比赛,逐次淘汰,最后一轮赛出冠军。请算一算共要打多少场?(注意:某一轮中有选手可能轮空,可以直接参加下一轮比赛。);(2)若要确定男、女冠军,一共要赛多少场?
B组:
6.5名同学约定暑假每两个同学要通一封信,共要写多少封信?
7.有一所学校只有10名男学生、10名女学生和一位老师。每天早晨,每个同学老师要向其它男女同学和老师各鞠一个躬,那么每天早晨在这所学校里共要行多少个鞠躬礼?
8.上海到南京共有43个车站,铁路局需要准备多少种的车票?
9.用1、2、3、4可以组成多少个不同的四位数。
10.某中学初一年级共有31人参加乒乓球单打,竞赛组织者打算让每一位运动员都能参加3次比赛,你说可行不可行?
C组:
11.有8人参加象棋循环比赛,每人所得的分数都是整数而且都不相同。比赛规定了得分原则,每赢一局得一分,平局双方各得0.5分,输者不失(扣)分。问获得各名次的棋手各得了多少分?
12.有一个孩子有红、黄、蓝三面旗子,利用这三面旗子,他能挂出多少种不同的信号?
13.大家知道,每个火车站有往返两种不同车票。某地区因需要,在原有若干个车站的基础上新增加几个火车站。现在已经知道,增加车站以后,车票票种增加了26种。问:原有几个车站,增加了多少车站?
答案:
A组:
1.3+2+1=6(次);
2.10次;
3.15场;
4.45场;
5.(1)50+25+12+(6+3+2)(此三轮轮空)+1=99(场),公式:人数-1=场数;(2)98场,公式:人数-2=场数。
B组:
6.4×5=20(封);
7.每位同学向其它同学鞠19个躬,向老师鞠1躬,共20个,20-20=400(个)(通常老师是还礼的,但本题并没说老师要给学生还礼,所以不能随意添加);
8.可以这样想,43个车站看作线段上43个点。由于甲站到乙站与乙站到甲站的起迄地点不同,需要不同的车票,因此每两个车站间就有两种不同的车票。上海到南京的车票的种数为:42×43=1806(种);
9.共24个;
10.这种打算不现实。因为单打比赛是两两进行的,要打完比赛,总人次必须是偶数。但若31人每人参加3次比赛,则总人数是93为奇数。
C组:
11.共打28场,共有28分,因为:7+6+5+4+3+2+1+0=28,所以 1~8名的3发数分别是:7、 6、 5、 4、 3、 2、 1、0分;
12.挂一面3种,挂二面6种,挂三面6种,共15种不同的信号;
13.由于每个火车站有往返两种不同车票,当然两个车站应有两种票。3个车站应有6种票,4个车站应有12种票。以此类推,可以列出:
车站数: 2 3 4 5 6 7 8
应有的票数: 2 6 12 20 30 42 56
由此可知,原有6个车站,增加到8个车站则票种要增加26种。
趣题巧解 猫捉老鼠
问题:如果3只猫在3分钟内捉住了3只老鼠,那么多少只猫将在100分钟内捉住100只老鼠?
这是一个古老的趣题,常见的答案是这样的:如果3只猫用3分钟捉住了3只老鼠,那么它们必须用1分钟捉住1只老鼠。于是,如果捉1只老鼠要花去它们1分钟时间,那么同样的3只猫在l00分钟内将会捉住100只老鼠。
遗憾的是,问题并不那么简单。刚才的解答实际上利用了某个假定,它无疑是题目中所没有谈到的。这个假定认为这3只猫把注意力全部集中于同一只老鼠身上,它们通过合作在1分钟内把它捉住,然后再联合把注意力转向另—只老鼠。
但是,假设3只猫换一个做法,每只猫各追捕1只老鼠,各花3分钟把它们捉住。按照这种设想,3只猫还是用3分钟捉住3只老鼠。于是,它们要花6分钟去捉住6只老鼠,花9分钟捉住9只老鼠,花99分钟捉住99只老鼠。现在我们面临着一个计算上的困难,同样的3只猫究竟要花多长时间才能捉住第100只老鼠呢?如果它们还是要足足花上3分钟去捉住这只老鼠,那么这3只猫得花l02分钟捉住102只老鼠。要在100分钟内捉住100只老鼠──这是题目关于猫捉老鼠的效率指标,我们肯定需要多于3只而少于4只的猫,因此答案只能是需要4只猫,虽然这有点浪费。
显然,对于3只猫是怎样准确地计算猫捉老鼠这种行动的时间,这个趣题没做任何交代。因此,如果允许答案不唯一,那么,答案可以是丰富多彩的,3只、4只、甚至更多。如果要求答案唯一的话,这个问题的唯一正确答案是:这是一个意义不明确的问题,由于没有更多关于猫是怎样捕捉老鼠的信息,因此无法回答这个问题。
这个简单的趣题启示我们,在解答一个数学问题(也包括其他问题)前,一定要仔细领会题目所给出的全部信息,既不要曲解题义,也不要人为添加条件以迎合所谓的标准答案。当然这个趣题也给了我们一个有益的人生启示──只有合作才能产生最佳的工作效益。
数学趣题:鸡兔同笼
大约在1500年前,《孙子算经》中记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?意思是:有若干只鸡和兔同在一个笼子里,数头有35个;数脚有94只。求笼中有鸡和兔各多少只?
※①假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成94÷2=47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数是35-12=23(只)。
【“砍足法”令古今中外数学家赞叹不已,这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,最终把它归成某个已经解决的问题。】
②用“假设法”:假设全部是鸡,头有35个,则脚有35×2=70只,相差94-70=24只,是兔多出的脚,每只兔多2只脚,兔有24÷2=12只,鸡有35-12=23(只)。
③用“方程”来解:解设兔头X只,则鸡有35-X只,列式为4X+(35-X)×2=94,X=12,鸡有35-12=23(只)。