高考在线
高考在线 >中考

长沙中考数学知识考点

2023-08-14 13:20:34 高考在线

长沙中考数学知识考点

三角形的三边关系:

在三角形中,任意两边和大于第三边,任意两边差小于第三边。

设三角形三边为a,b,c

a+b>c

a+c>b

b+c>a

a-b

a-c

b-c

在直角三角形中,设a、b为直角边,c为斜边。

则两直角边的平方和等于斜边平方。

在等边三角形中,a=b=c

在等腰三角形中,a,b为两腰,则a=b

在三角形ABC的内角A、B、C所对边分别为a、b、c的情况下,c2=a2+b2-2abcosc

中心对称与中心对称图形:

1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。

2.中心对称图形:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

3.中心对称的性质:(1)关于中心对称的两个图形是全等形;

(2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;

(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。

几何变换法

在数学问题的研究中,,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。

几何变换包括:(1)平移;(2)旋转;(3)对称。

中考数学知识考点

1、分式的运算:

1.分式的加减法法则:

(1)同分母的分式相加减,分母不变,把分子相加;

(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。

2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

3.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。

4.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。

约分的方法和步骤包括:

(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的公约数的积;

(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。

2、通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。

分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。

(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的次幂的所有不同字母的积;

(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;

(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;

(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。

3、注意:

(1)分式的约分和通分都是依据分式的基本性质;

(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。

(3)约分时,分子与分母不是乘积形式,不能约分.

3.求最简公分母的方法是:

(1)将各个分母分解因式;

(2)找各分母系数的最小公倍数;

(3)找出各分母中不同的因式,相同因式中取次数的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。

中考数学考点

1)分式混合运算法则:

分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

变号必须两处,结果要求最简.

2)分式方程的增根问题

(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知

数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现

不适合原方程的根---增根;

(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.

列分式方程基本步骤

①审-仔细审题,找出等量关系。

②设-合理设未知数。

③列-根据等量关系列出方程(组)。

④解-解出方程(组)。注意检验

⑤答-答题。

3)解分式方程的基本步骤

⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

4)分式的基本性质:

分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

即,(C≠0),其中A、B、C均为整式。分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。

5)分式的约分步骤:

(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;

(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。