-
相关文章
中考数学圆的定义及概念归纳
2023-08-05 21:09:36初一数学第五单元复习一元一次方程有哪些
2023-08-04 11:57:19初中七年级圆的练习题整理
2023-08-13 15:43:02滨州数学中考考点
2023-08-05 06:34:58达州中考录取率多少,各高中录戎数线统计
2023-08-05 23:03:19广安中考录取率多少,各高中录戎数线统计
2023-08-07 10:01:37宜宾中考录取率多少,各高中录戎数线统计
2023-08-18 05:38:08数学八年级上册同步练习答案最新
2023-08-13 07:31:11关于高中读书议论文作文素材五篇
2023-08-11 11:28:29贫困学生助学金申请书模板五篇
2023-08-14 08:50:24个人求职简历免费版大全五篇
2023-08-13 19:07:51
中考考点之分式方程三篇
初中数学知识点:分式方程
分式方程特征:
①一是方程
②二是分母中含有未知数。
因此整式方程和分式方程
解法:
解分式方程的基本思想是把分式方程转化为整式方程,其一般步骤是:
(1)去分母:分式方程两边同乘以方程中各分母的最简公分母,把分式方程转化为整式方程。
(最简公分母:①系数取最小公倍数②出现的字母取最高次幂③出现的因式取最高次幂)
(2)解方程:解整式方程,得到方程的根;
(3)验根:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;
否则,这个解不是原分式方程的解,是原分式方程的增根。
如果分式本身约分了,也要带进去检验。
在列分式方程解应用题时,不仅要检验所得解的是否满足方程式,还要检验是否符合题意。
一般的,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.
注意:
(1)注意去分母时,不要漏乘整式项。
(2)増根是分式方程去分母后化成的整式方程的根,但不是原分式方程的根。
(3)増根使最简公分母等于0。
分式方程的特殊解法:
换元法:
换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。的根本区别就在于分母中是否含有未知数。
初中数学知识点:分式方程的应用
分式方程的应用:
列分式方程解应用题的步骤:(1)审题;(2)设未知数;(3)列分式方程;(4)解分式方程,并验根;(5)作答。
列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
列分式方程解应用题的一般步骤是:
①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
③列:找出相等关系,列出分式方程;
④解:解这个分式方程;
⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
⑥答:写出答案。
无解的含义:
1.解为增根。
2.整式方程无解。(如:0x不等于0.)
用分式解应用题的常见题型:
(1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
(2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
(3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量
分式方程的应用的教学目标
1、经历将实际问题中的等量关系用分式方程表示的过程,体验分式方程模型的思想,会用分式方程解决简单的实际问题。
2、经历“实际问题情境——建立分式方程模型——求解——解释解的合理性”的过程,进一步提高学生分析问题和解决问题的能力,增强学生学数学、用数学的意识。
3、通过创设贴近学生生活实际的现实情境,增强学生的应用意识,培养学生对生活的热爱,进行节约用水、用电、环保方面的教育。
中考数学知识点总结:分式方程解法与应用
要点一、分式方程的概念
分母中含有未知数的方程叫分式方程.
要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数.
(2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的方程是整式方程.
(3)分式方程和整式方程的联系:分式方程可以转化为整式方程.
要点二、分式方程的解法
解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根.
解分式方程的一般步骤:
(1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母);
(2)解这个整式方程,求出整式方程的解;
(3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解.
要点三、解分式方程产生增根的原因
方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根.
产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根.
要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程不是同解方程,这时求得的根就是原方程的增根.
(2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中没有错误的前提下进行的.
要点四、分式方程的应用
分式方程的应用主要就是列方程解应用题.
列分式方程解应用题按下列步骤进行:
(1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系;
(2)设未知数;
(3)找出能够表示题中全部含义的相等关系,列出分式方程;
(4)解这个分式方程;
(5)验根,检验是否是增根;
(6)写出答案.